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active control and drag optimization of incompressible viscous flow past cylinders,
using the two-dimensional Navier–Stokes equations as the flow model. The compu-
tational methodology relies on the following ingredients: space discretization of the
Navier–Stokes equations by finite element approximations, time discretization by
a second-order-accurate two-step implicit/explicit finite difference scheme, calcula-
tion of the cost function gradient by the adjoint equation approach, and minimization
of the cost function by a quasi-Newton method `a la BFGS. The above methods have
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1. INTRODUCTION

Engineers have not waited for mathematicians to successfully address flow control prob-
lems (see, e.g., Refs. [7, 19] for a review on flow control from the engineering point of
view); indeed, Prandtl as early as 1915 was concerned with flow control and was designing
ingenious systems to suppress or delay boundary layer separation [30]. The past decade
has seen an explosive growth of investigations and publications of a mathematical nature
concerning various aspects of the control of viscous flow, good examples being provided
in [18, 34]. Actually these two volumes also contain some articles related to the computa-
tional aspect of the optimal control of viscous flow, but usually, the geometries are fairly
simple and the Reynolds numbers fairly low. It is interesting to observe that theJournal of
Computational Physicshas published recently articles on the above topics (see Refs. [10,
23, 25]); however, in those articles, once again, the geometry is simple and/or the Reynolds
number is low.

The main goal of this article is to investigate computational methods for the active
control and drag optimization of incompressible viscous flow past cylinders, using the two-
dimensional Navier–Stokes equations as the flow model. The computational methodology
relies on the following ingredients: Space discretization of the Navier–Stokes equations
by finite element approximations, time discretization by a second-order-accurate two-step
implicit/explicit finite difference scheme, calculation of the cost function gradient by the
adjoint equation approach, and minimization of the cost function by a quasi-Newton method
à la BFGS. Motivated in part by the experimental work of Tokumaru and Dimotakis [36],
the above methods have been applied to boundary control by rotation of the flow around
a circular cylinder and show 30 to 60% drag reduction, compared to the fixed cylinder
configuration, for Reynolds numbers in the range of 200 to 1000.

From a methodological point of view, some of the methods used here are clearly related
to those employed by our former collaborator M. Berggren in [4] for boundary control by
blowing and suction of incompressible viscous flow in bounded cavities. In fact, the method
described in the present article has been extended in [8] to the drag reduction of viscous
flow around a cylinder by blowing and suction, leading to further “net” drag reduction
compared to the control by rotation; an article to appear in the open literature is in pre-
paration.

The organization of the remainder of the paper is as follows: In Section 2 we formulate the
flow control problem and address its time discretization in Section 3. The important problem
of the space discretization by the finite element method is discussed in Section 4; special
attention is given there to velocity spaces, which are discretely divergence-free in order to
reduce the number of algebraic constraints in the control problem. The full discretization of
the control problem is addressed in Section 5. Since we intend to use solution methods based
on a quasi-Newton algorithm `a la BFGS (see Section 6), attention is focused in Section 5
on the derivation of the gradient of the fully discrete cost function via the classical adjoint
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equation method. The flow simulator (actually a Navier–Stokes equations solver) is further
discussed in Section 7, where it is validated on well-documented flow-around-cylinder test
problems for various values of the Reynolds number. Finally, the results of various numerical
experiments for flow control past a cylinder are discussed in Section 8; they definitely show
that a substantial drag reduction can be obtained by an appropriate rotation of the cylinder.

2. FORMULATION OF THE FLOW CONTROL PROBLEM

2.1. Fluid Flow Formulation

LetÄ be a region ofRd (d = 2, 3 in practice); we denote by0 the boundary∂Ä of Ä.
We assume thatÄ is filled with a Newtonian incompressible viscous fluid ofdensityρ and
viscosityµ; we assume that the temperature is constant. Under these circumstances the flow
of such a fluid is modeled by the following system of Navier–Stokes equations:

ρ [∂ty+ (y · ∇)y] = ∇ · σ + ρf in Ä× (0, T), (1)

∇ · y = 0 inÄ× (0, T) (incompressibility condition). (2)

In (1), (2), y = {yi }di=1 denotes thevelocityfield, π the pressure, f a density of external
forces per mass unit, andσ(=σ(y, π)) the stress tensor, defined by

σ = 2µD(y)− π I ,

with therate of deformation tensorD(y) defined by

D(y) = 1

2
(∇y+∇yt ).

We also have

∂t = ∂

∂t
, ∇2 =

d∑
i=1

∂2

∂x2
i

, ∇ · y =
d∑

i=1

∂yi

∂xi
, (y · ∇)z=


d∑

j=1

yj
∂zi

∂xj


d

i=1

.

In the above equations(0, T) is thetime intervalduring which the flow is considered.
Equations (1) and (2) must be completed by further conditions, such as theinitial condition

y(0) = y0 (with∇ · y0 = 0) (3)

and boundary conditions. Let us consider the typical situation, of interest to us, described in
Fig. 1, corresponding to an external flow around a cylinder of cross-sectionB; we assume
that the classical two-dimensional reduction holds.

In fact,0u∪0d∪0N ∪0S is anartificial boundary, which must be taken sufficiently far
from B so that the corresponding flow is a good approximation of the unbounded external
flow aroundB. Typical boundary conditions are

y = y∞ on (0u∪0N ∪0S)× (0, T), (4)

σ n = 0 on0d× (0, T) (downstream boundary condition), (5)
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FIG. 1. External flow around a cylinder of cross-sectionB.

with n theunit vectorof the outward normal on0. We are intentionally vague concerning the
boundary conditions on∂B, since they will be part of the control process. Let us conclude
this paragraph by recalling that theReynolds numberRe is classically defined by

Re= ρU L/µ, (6)

withU acharacteristic velocity(|y∞|, here) andL acharacteristiclength (the thickness ofB,
for example).

Our goal in this article is to prescribe on∂B boundary conditions of theDirichlet type
(i.e., velocity imposed on∂B) so that some flow-related performance criterion (the cost
function) will be minimized under reasonable constraints on the control variables.

2.2. Formulation of the Control Problem

The flow control problem to be discussed in this article consists of minimizing adrag-
related cost function via controls acting on∂B; this problem can be formulated (using
classical control formalism) as

u ∈ U,
J(u) ≤ J(v), ∀v ∈ U, (7)

where, in (7), thecontrol spaceU is a vector space of vector-valued functionsv defined on
∂B× (0, T) and satisfying∫

∂B
v(t) · n ds= 0 for t ∈ (0, T), (8)

and where thecost function Jis defined by

J(v) = ε

2

(∫ T

0
‖v(t)‖2α dt +

∫ T

0

∫
∂B
|∂tv(x, t)|2 ds dt

)
+
∫ T

0
Pd(t) dt, (9)

with ε(≥0) a regularizationparameter.
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In (8), (9), we have used the following notation:

• ϕ(t) for the functionx→ ϕ(x, t).
• ds for the surface measure on∂B.
• ‖v‖α for a norm ofv defined on∂B, involving space derivatives of orderα, with

α possibly noninteger (readers afraid of these mathematical complications do not have to
worry, since in this article we shall consider boundary controls that are functions oft only).
• Pd(t) is the power needed to overcome, at timet , the drag exerted onB in the

direction opposite to that of the motion;Pd(t) is defined by

Pd(t) =
∫
∂B
σ n · (v− y∞) ds. (10)

• Finally, y is the solution to the following Navier–Stokes system:

ρ [∂ty+ (y · ∇)y] = ∇ · σ + ρf in Ä× (0, T), (11)

∇ · y = 0 inÄ× (0, T), (12)

y(0) = y0 (with ∇ · y0 = 0), (13)

σn = 0 on0d× (0, T), (14)

y = y∞ on (0u∪0N ∪0S)× (0, T), (15)

y = v on ∂B× (0, T). (16)

Remark 2.1. The flux condition (8) is not essential and can be easily relaxed if, for
example, the downstream boundary conditions are of Neumann type (like those in (14)).

Remark 2.2. The Navier–Stokes equation (11) can also be written

ρ [∂ty+ (y · ∇)y] − µ∇2y+∇π = ρf in Ä× (0, T);

however, form (11) is better suited to the drag reduction problem (7), since, as (10), it
involves the stress tensorσ .

Remark 2.3. In the particular case of incompressible viscous flow we have

∫ T

0
Pd(t) dt =

∫ T

0
Ed(t) dt + (K (T)− K (0))+

∫ T

0
Pc(t) dt

+
∫ T

0
P∞(t) dt −

∫ T

0
Pf(t) dt, (17)

where, in (17),

• Ed(t) = 2µ
∫
Ä
|D(y− y∞)|2 dx is theviscous dissipation energy,

• K (t) = ρ

2

∫
Ä
|y(t)− y∞|2 dx is akinetic energy,

• Pc(t) = ρ

2

∫
∂B|v− y∞|2v · n ds is acontrol related power,

• P∞(t) = ρ

2

∫
0d∞
|y− y∞|2y · n ds is adownstream boundary related power,

• Pf(t) = ρ
∫
Ä

f(t) · (y(t)− y∞) dx is theexternal forcing power.
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Some observations are in order, such as:

1. If 0d “goes to infinity” in theOx1 direction, theny→ y∞, which implies in turn
that P∞ → 0.

2. Whenever the control is absent, i.e.,v = 0, we havePc(t) = 0.

We can summarize relation (17) by noting that “the drag work is equal to the energy dissi-
pated by viscosity+ the kinetic energy variation between 0 andT + the control associated
work+ the downstream boundary associated work− the external forcing work.” The above
observation has the following consequence: instead of minimizingJ(·) defined by (9) we
can minimize the cost functionJ(·) defined by

J(v) = ε

2

(∫ T

0
‖v(t)‖2α dt +

∫ T

0

∫
∂B
|∂tv(x, t)|2 ds dt

)
+
∫ T

0
Ed(t) dt

+ (K (T)− K (0))+
∫ T

0
Pc(t) dt +

∫ T

0
P∞(t) dt −

∫ T

0
Pf(t) dt;

this function is simpler than the one defined by (9) since it does not involve boundary
integrals of stress-tensor-related quantities. However, we kept working with the cost function
defined by (9) using an appropriate variational formulation of the discrete Navier–Stokes
equations (see Section 4.3 for details); we can easily compute an accurate approximation
of the drag (actually second order accurate as shown in [35], where a similar approach has
been used for computing the drag coefficients of a sphere).

In order to applyquasi-Newton-type methodsà la BFGS to the solution of the control
problem (7), it is instrumental to know how to compute the gradient of the cost function
J1t

h (·), obtained from the full space-time discretization of the control problem (7), since
we shall solve the discrete variant of problem (7) via the (necessary)optimality condition

∇ J1t
h

(
u1t

h

) = 0,

whereu1t
h is a solution of the fully discrete control problem. The calculation of∇ J1t

h will
be discussed in Section 5.

3. TIME DISCRETIZATION OF THE CONTROL PROBLEM

3.1. Generalities

In order to facilitate the task of the reader unfamiliar with control methodology (not
to say philosophy) we are going to discuss first thetime discretizationissue. The space
and consequently full space/time discretization issues will be addressed in Section 4.
This approach of fractioning the computational difficulties has the definite advantage that
some practitioners will be able to use the material in this article for other types of space
approximations than the finite element ones discussed in Section 4 (one may prefer spectral
methods, for example).

3.2. Formulation of the Time Discrete Control Problem

We define first a time discretization step1t by 1t = T/N, with N a (large) positive
integer. Concentrating on problem (7), we approximate it by

u1t ∈ U1t ,
(18)

J1t (u1t ) ≤ J1t (v), ∀v ∈ U1t ,
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with

U1t = ΛN, (19)

Λ =
{
λ | λ ∈ (Hα(∂Ä))d,

∫
∂B
λ · n ds= 0

}
, (20)

and

J1t (v) = ε

2
1t

(
N∑

n=1

‖vn‖2α +
N∑

n=2

∥∥∥∥vn − vn−1

1t

∥∥∥∥2

0

)
+1t

N∑
n=1

Pn
d , (21)

where, in (21),Pn
d is the discrete drag power defined (with obvious notation) by

Pn
d =

∫
∂B
σ(yn, πn) n · (vn − y∞) ds

with {(yn, πn)}Nn=1 obtained fromv via the solution of the following semi-discrete Navier–
Stokes equations:

y0 = y0, (22)

ρ

(
y1− y0

1t
+ (y0 · ∇)y0

)
= ∇ · σ

(
2

3
y1+ 1

3
y0, π1

)
+ ρf1 in Ä, (23)

∇ · y1 = 0 inÄ, (24)

σ

(
2

3
y1+ 1

3
y0, π1

)
n = 0 on0d, (25)

y1 = y∞ on0u∪0N ∪0S, (26)

y1 = v1 on ∂B, (27)

and forn = 2, . . . , N

ρ

(
(3/2)yn − 2yn−1+ (1/2)yn−2

1t
+ ((2yn−1− yn−2) · ∇)(2yn−1− yn−2)

)
= ∇ · σ(yn, πn)+ ρf n in Ä, (28)

∇ · yn = 0 inÄ, (29)

σ(yn, πn) n = 0 on0d, (30)

yn = y∞ on0u∪0N ∪0S, (31)

yn = vn on ∂B. (32)

The above scheme is a semi-implicit, second-order-accurate two-step scheme.
Anticipating the finite element approximation to take place in the following section, we

can rewrite (23)–(32) invariational form. We obtain thus

ρ

∫
Ä

y1− y0

1t
· zdx+ 2µ

∫
Ä

D
(

2

3
y1+ 1

3
y0

)
: D(z) dx

+ ρ
∫
Ä

(y0 · ∇)y0 · zdx−
∫
Ä

π1∇ · zdx

= ρ
∫
Ä

f1 · zdx, ∀z ∈ V0, (33)
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∫
Ä

∇ · y1q dx= 0, ∀q ∈ L2(Ä), (34)

y1 = y∞ on0u∪0N ∪0S, (35)

y1 = v1 on ∂B; (36)

and forn = 2, . . . , N

ρ

∫
Ä

(3/2)yn − 2yn−1+ (1/2)yn−2

1t
· zdx+ 2µ

∫
Ä

D(yn) : D(z) dx

+ ρ
∫
Ä

((2yn−1− yn−2) · ∇)(2yn−1− yn−2) · zdx−
∫
Ä

πn∇ · zdx

= ρ
∫
Ä

f n · zdx, ∀z ∈ V0, (37)

∫
Ä

∇ · ynq dx= 0, ∀q ∈ L2(Ä), (38)

yn = y∞ on0u∪0N ∪0S, (39)

yn = vn on ∂B. (40)

In (33), (37), we have used the notation

T : S=
d∑

i=1

d∑
j=1

ti j si j

to denote the scalar product inRd2
of the two tensorsT = {ti j }di, j=1 andS= {si j }di, j=1, and

the spaceV0 is defined by

V0 = { z | z ∈ (H1(Ä))d, z= 0 on0u∪0N ∪0S∪ ∂B}. (41)

3.3 Comments on the Time Discretization of the Control Problem (7)

Since the time discretization step used in Section 3.2 is a two-step one, astarting procedure
is required; the one we have used, namely, (23)–(27), leads to a generalized Stokes problem
to obtain{y1, π1} which has the same coefficients as the ones used to obtain{yn, πn} from
vn andyn−1, yn−2. As we shall see later on in this article, scheme (22)–(32), albeit partly
explicit, has shown very good robustness properties when applied to the solution of drag
reduction problems.

4. FULL DISCRETIZATION OF THE CONTROL PROBLEM

4.1. Synopsis

In order tospatially discretizethe control problem (7), we are going to use afinite element
approximation, since this kind of approximation is well suited to handling complicated
boundaries and boundary conditions. The discretization to be used combines a continuous
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piecewiseQ2-approximation for the velocity and a discontinuousP1-approximation for the
pressure (withP1 (resp.,Q2) the space of the polynomials inx1, x2 of degree≤1 (resp., of
degree≤2 with respect to each variable)). This approximation satisfies adiscrete inf–sup
condition, implying that the discrete problems are well-posed and the approximation is
convergent (see, e.g., [6, 11, 17, 29] for the finite element approximation of the Navier–
Stokes equations).

4.2. Discrete Flow Model

In order to fully discretize the semi-discrete model (22)–(32) we are going to mimic its
equivalent formulation. Doing so, we obtain

y0
h= y0h (a convenient approximation ofy0); (42)

and

ρ

∫
Äh

y1
h − y0

h

1t
· zdx+ 2µ

∫
Äh

D
(

2

3
y1

h +
1

3
y0

h

)
: D(z) dx

+ ρ
∫
Äh

(
y0

h · ∇
)
y0

h · zdx−
∫
Äh

π1
h∇ · zdx

= ρ
∫
Äh

f1 · zdx, ∀z ∈ V0h, (43)

∫
Äh

∇ · y1
hq dx= 0, ∀q ∈ Ph, (44)

y1
h = y∞ on0u,h ∪0N,h ∪0S,h, (45)

y1
h = v1 on ∂Bh; (46)

then forn = 2, . . . , N,

ρ

∫
Äh

(3/2)yn
h − 2yn−1

h + (1/2)yn−2
h

1t
· zdx+ 2µ

∫
Äh

D
(
yn

h

)
: D(z) dx

+ ρ
∫
Äh

((
2yn−1

h − yn−2
h

) · ∇)(2yn−1
h − yn−2

h

) · zdx−
∫
Äh

πn
h∇ · zdx

= ρ
∫
Äh

f n · zdx, ∀z ∈ V0h, (47)∫
Äh

∇ · yn
hq dx= 0, ∀q ∈ Ph, (48)

yn
h = y∞ on0u,h ∪0N,h ∪0S,h, (49)

yn
h = vn on ∂Bh. (50)

In formulation (42)–(50) we require

yn
h ∈ Vh, ∀n = 0, 1, . . . , N, (51)

πn
h ∈ Ph, ∀n = 1, . . . , N. (52)
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The spacesVh andPh are defined as

Vh =
{

z | z ∈ (C0(Ǟ))2, z|K ∈ Q2
2K , ∀K ∈ Qh

}
, (53)

Ph = {q | q ∈ L2(Äh), q|K ∈ P1, ∀K ∈ Qh }, (54)

whereQh is a “quadrangulation” of Äh (Äh: finite element approximation ofÄ) and

Q2K = {ϕ |ϕ ◦ FK ∈ Q2}, (55)

with FK a well-chosen one-to-one mapping from [0, 1]2 into K , such thatFK ∈ Q2
2. We

also need to introduce the following subspaceV0h of Vh:

V0h = {z | z ∈ Vh, z= 0 on0u,h ∪0N,h ∪0S,h ∪ ∂Bh}. (56)

Let us introduce now the following subspaces ofVh andV0h:

Wh =
{

z | z ∈ Vh,

∫
K

q∇ · zdx = 0, ∀q ∈ P1, ∀K ∈ Qh

}
, (57)

W0h = Wh ∩ V0h. (58)

A formulation equivalent to (42)–(50) is provided then by

y0
h = y0h in Wh (59)

and

ρ

∫
Äh

y1
h − y0

h

1t
· zdx+ 2µ

∫
Äh

D
(

2

3
y1

h +
1

3
y0

h

)
: D(z) dx+ ρ

∫
Äh

(
y0

h · ∇
)
y0

h · zdx

= ρ
∫
Äh

f1 · zdx, ∀z ∈W0h, y1
h ∈Wh, (60)

y1
h = y∞ on0u,h ∪0N,h ∪0S,h, (61)

y1
h = v1 on ∂Bh; (62)

then forn = 2, . . . , N,

ρ

∫
Äh

(3/2)yn
h − 2yn−1

h + (1/2)yn−2
h

1t
· zdx+ 2µ

∫
Äh

D
(
yn

h

)
: D(z) dx

+ ρ
∫
Äh

((
2yn−1

h − yn−2
h

) · ∇)(2yn−1
h − yn−2

h

) · zdx

= ρ
∫
Äh

f n · zdx, ∀z ∈W0h, yn
h ∈Wh, (63)

yn
h = y∞ on0u,h ∪0N,h ∪0S,h, (64)

yn
h = vn on∂Bh. (65)
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The pressure unknown has been eliminated, at the price of having to use finite element spaces
defined by nontrivial linear constraints and also the necessity to construct vector bases of
Wh andW0h satisfying these constraints. For more details on approximately divergence-
free element spaces and the construction of the corresponding basis (shape) functions see,
e.g., Chapter VI in [6] (and the references therein).

4.3. Formulation of the Fully Discrete Control Problem

Using the above approximation of the Navier–Stokes equations yields the discrete control
problem

u1t
h ∈ U1t

h ,
(66)

J1t
h

(
u1t

h

) ≤ J1t
h (v), ∀v ∈ U1t

h ,

with

U1t
h = ΛN

h , (67)

Λh =
{
λ

∣∣∣∣ ∫
∂B
λ · n ds= 0, λ = λ̃

∣∣∣∣
∂B

, λ̃ ∈Wh

}
, (68)

and

J1t
h (v) = ε

2
1t

(
N∑

n=1

‖vn‖2α +
N∑

n=2

∥∥∥∥vn − vn−1

1t

∥∥∥∥2

0

)
+1t

N∑
n=1

Pn
d,h, (69)

where the discrete drag powerPn
d,h is defined by

P1
d,h = ρ

∫
Äh

y1
h − y0

h

1t
· y1

b dx+ 2µ
∫
Äh

D
(

2

3
y1

h +
1

3
y0

h

)
: D
(
y1

b

)
dx

+ ρ
∫
Äh

(
y0

h · ∇
)
y0

h · y1
b dx− ρ

∫
Äh

f1 · y1
b dx, (70)

and forn = 2, . . . , N

Pn
d,h = ρ

∫
Äh

(3/2)yn
h − 2yn−1

h + (1/2)yn−2
h

1t
· yn

b dx+ 2µ
∫
Äh

D
(
yn

h

)
: D
(
yn

b

)
dx

+ ρ
∫
Äh

((
2yn−1

h − yn−2
h

) · ∇)(2yn−1
h − yn−2

h

) · yn
b dx− ρ

∫
Äh

f n · yn
b dx, (71)

with yn
b a “lifting” (i.e., an extension) ofvn − y∞, contained inWh and vanishing on

0u,h ∪0N,h ∪0S,h. The above quantities approximatePn
d defined in Section 3.2. In (70) and

(71),{yn
h}Nn=0 is obtained fromvn via the solution of (59)–(65).

Remark 4.1. Using the facts thatyn
h andyn

b are approximately divergence-free, thatyn
b

vanishes away from∂B, and thatyn
h satisfies the discrete momentum equations (59)–(65),

it can be shown that the relations (70) and (71) are discrete analogues of the drag power
(10). For more details on the variational approximation of boundary fluxes in the context
of the Navier–Stokes equations, see, e.g., [16, 35].
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5. GRADIENT CALCULATION

Computing the gradient∇ J1t
h of functional J1t

h is at the same time straightforward
and complicated; let us comment on this apparently paradoxical statement: computing the
gradient is straightforward in the sense that it relies on a well-established and systematical
methodology which has been discussed in many articles (see, e.g., [4, 12, 13, 20, 21]); on
the other hand the relative complication of the discrete state equations (59)–(65) makes the
calculation of∇ J1t

h a bit tedious as we can guess from the relations just below. Indeed, the
gradient∇ J1t

h (v) of functionalJ1t
h atv is given by

〈∇ J1t
h (v), w

〉 = 1t
N∑

n=1

〈
gn

h −
n
∫
∂B gn

h · n ds∫
∂B ds

, wn

〉
, ∀w ∈ U1t

h , (72)

with

〈
gN

h , wN
〉= ε(vN,wN)α + ε

(
vN − vN−1

(1t)2
,wN

)
+ ρ

∫
Äh

(3/2)pN
h

1t
· w̃N dx

+ 2µ
∫
Äh

D
(
pN

h

)
: D(w̃N) dx+ ρ

∫
Äh

(3/2)yN
h − 2yN−1

h + (1/2)yN−2
h

1t
· w̃N dx

+ ρ
∫
Äh

[(
2yN−1

h − yN−2
h

) · ∇](2yN−1
h − yN−2

h

) · w̃N dx

+ 2µ
∫
Äh

D
(
yN

h

)
: D(w̃N) dx− ρ

∫
Äh

fN
h · w̃N dx, (73)

and

〈
gN−1

h ,wN−1
〉 = ε(vN−1,wN−1)α + ε

(
2vN−1− vN−2− vN

(1t)2
,wN−1

)
+ ρ
∫
Äh

(3/2)pN−1
h − 2pN

h

1t
· w̃N−1 dx+ 2µ

∫
Äh

D
(
pN−1

h

)
: D(w̃N−1) dx

+ ρ
∫
Äh

[(
2yN−1

h − yN−2
h

) · ∇](w̃N−1) · (2pN
h

)
dx

+ ρ
∫
Äh

(w̃N−1 · ∇)(2yN−1
h − yN−2

h

) · (2pN
h

)
dx

+ ρ
∫
Äh

(3/2)yN−1
h − 2yN−2

h + (1/2)yN−3
h

1t
· w̃N−1 dx

+ ρ
∫
Äh

[(
2yN−2

h − yN−3
h

) · ∇](2yN−2
h − yN−3

h

) · (w̃N−1) dx

+ 2µ
∫
Äh

D
(
yN−1

h

)
: D(w̃N−1) dx− ρ

∫
Äh

fN−1
h · w̃N−1 dx, (74)
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then forn = N − 2, . . . ,2,

〈gn
h,w

n〉 = ε(vn,wn)α + ε
(

2vn − vn−1− vn+1

(1t)2
,wn

)
+ ρ
∫
Äh

(3/2)pn
h − 2pn+1

h + (1/2)pn+2
h

1t
· w̃n dx+ 2µ

∫
Äh

D
(
pn

h

)
: D(w̃n) dx

+ ρ
∫
Äh

[(
2yn

h − yn−1
h

) · ∇](w̃n) · (2pn+1
h

)
dx

+ ρ
∫
Äh

[(
2yn+1

h − yn
h

) · ∇](w̃n) · (−pn+2
h

)
dx

+ ρ
∫
Äh

(w̃n · ∇)(2yn
h − yn−1

h

) · (2pn+1
h

)
dx

+ ρ
∫
Äh

(w̃n · ∇)(2yn+1
h − yn

h

) · (−pn+2
h

)
dx

+ ρ
∫
Äh

(3/2)yn
h − 2yn−1

h + (1/2)yn−2
h

1t
· w̃n dx

+ ρ
∫
Äh

[(
2yn−1

h − yn−2
h

) · ∇](2yn−1
h − yn−2

h

) · (w̃n) dx

+ 2µ
∫
Äh

D
(
yn

h

)
: D(w̃n) dx− ρ

∫
Äh

f n
h · w̃n dx, (75)

and, finally, forn = 1,

〈g1
h,w

1〉 = ε(v1,w1)α + ε
(

v1− v2

(1t)2
,w1

)
+ ρ
∫
Äh

p1
h − 2p2

h + (1/2)p3
h

1t
· w̃1 dx+ 2µ

∫
Äh

D
(

2

3
p1

h

)
: D(w̃1) dx

+ ρ
∫
Äh

[(
2y1

h − y0
h

) · ∇](w̃1) · (2p2
h

)
dx

+ ρ
∫
Äh

[(
2y2

h − y1
h

) · ∇](w̃1) · (−p3
h

)
dx

+ ρ
∫
Äh

(w̃1 · ∇)(2y1
h − y0

h

) · (2p2
h

)
dx

+ ρ
∫
Äh

(w̃1 · ∇)(2y2
h − y1

h

) · (−p3
h

)
dx

+ ρ
∫
Äh

y1
h − y0

h

1t
· w̃1 dx+ ρ

∫
Äh

(
y0

h · ∇
)(

y0
h

) · (w̃1) dx

+ 2µ
∫
Äh

D
(

2

3
y1

h +
1

3
y0

h

)
: D(w̃1) dx− ρ

∫
Äh

f1
h · w̃1 dx. (76)
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In (73)–(76)w̃n is a lifting of wn contained inWh and vanishing on0u,h ∪0N,h ∪0S,h, and
pn

h ∈Wh is the solution of the discrete adjoint system

ρ

∫
Äh

(3/2)pN
h

1t
· zdx+ 2µ

∫
Äh

D
(
pN

h

)
: D(z) dx = 0, ∀z ∈W0h, (77)

pN
h = 0 onΓu,h ∪ ΓN,h ∪ ΓS,h,

(78)

pN
h = vN

h − y∞ on ∂Bh; (79)

and

ρ

∫
Äh

(3/2)pN−1
h − 2pN

h

1t
· zdx+ 2µ

∫
Äh

D
(
pN−1

h

)
: D(z) dx

+ ρ
∫
Äh

[(
2yN−1

h − yN−2
h

) · ∇]z · (2pN
h

)
dx

+ ρ
∫
Äh

(z · ∇)(2yN−1
h − yN−2

h

) · (2pN
h

)
dx = 0, ∀z ∈W0h, (80)

pN−1
h = 0 onΓu,h ∪ ΓN,h ∪ ΓS,h, (81)

pN−1
h = vN−1

h − y∞ on ∂Bh; (82)

then forn = N − 2, . . . ,2,

ρ

∫
Äh

(3/2)pn
h − 2pn+1

h + (1/2)pn+2
h

1t
· zdx+ 2µ

∫
Äh

D
(
pn

h

)
: D(z) dx

+ ρ
∫
Äh

[(
2yn

h − yn−1
h

) · ∇]z · (2pn+1
h

)
dx

+ ρ
∫
Äh

[(
2yn+1

h − yn
h

) · ∇]z · (−pn+2
h

)
dx

+ ρ
∫
Äh

(z · ∇)(2yn
h − yn−1

h

) · (2pn+1
h

)
dx

+ ρ
∫
Äh

(z · ∇)(2yn+1
h − yn

h

) · (−pn+2
h

)
dx = 0, ∀z ∈W0h, (83)

pn
h = 0 onΓu,h ∪ ΓN,h ∪ ΓS,h, (84)

pn
h = vn

h − y∞ on ∂Bh; (85)

and, finally, forn = 1,

ρ

∫
Äh

p1
h − 2p2

h + (1/2)p3
h

1t
· zdx+ 2µ

∫
Äh

D
(

2

3
p1

h

)
: D(z) dx

+ ρ
∫
Äh

[(
2y1

h − y0
h

) · ∇]z · (2p2
h

)
dx

+ ρ
∫
Äh

[(
2y2

h − y1
h

) · ∇]z · (−p3
h

)
dx
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+ ρ
∫
Äh

(z · ∇)(2y1
h − y0

h

) · (2p2
h

)
dx

+ ρ
∫
Äh

(z · ∇)(2y2
h − y1

h

) · (−p3
h

)
dx = 0, ∀z ∈W0h, (86)

p1
h = 0 onΓu,h ∪ ΓN,h ∪ ΓS,h, (87)

p1
h = v1

h − y∞ on ∂Bh. (88)

Once∇ J1t
h is known, via the solution of the above adjoint system, we can derive

optimality conditions which enable us to solve the discrete control problem (66) by various
kinds of descent methods such as conjugate gradient, BFGS, etc. The BFGS solution of
(66) will be discussed in Section 6 hereafter.

Remark 5.1. As observed by one of the referees the term((vN − vN−1)/(1t)2,wN)

(resp.,((v1− v2)/(1t)2,w1)) in (73) (resp., in (76)) can be interpreted as((2vN − vN−1−
vN+1)/(1t)2,wN) (resp.,((2v1− v0− v2)/(1t)2,w1)) completed byvN = vN+1 (resp.,
v1 = v0), i.e., by the discrete analogues of∂tv|t=0 = ∂tv|t=T = 0, natural boundary condi-
tions associated to the functional

∫ T
0

∫
∂B |∂tv(x, t)|2 ds dt.

6. A BFGS ALGORITHM FOR THE DISCRETE CONTROL PROBLEM

In order to solve the discrete control problem (66) we shall employ aquasi-Newton
method̀a la BFGS (see, e.g., [27] for BFGS algorithms and their implementation); such an
algorithm reads as follows when applied to the solution of a generic optimization problem
such as

x ∈ Rl ,

f (x) ≤ f (y), ∀y ∈ Rl .
(89)

If f is smooth enough the solution of problem (89) satisfies also

∇ f (x) = 0. (90)

The BFGS algorithm applied to the solution of (89), (90) takes the form

x0 ∈ Rl , H0 ∈ L(Rl ,Rl ) are given, (91)

g0 = ∇ f (x0). (92)

For k ≥ 0, assuming thatxk, Hk, andgk are known, we proceed as follows:

dk = −Hkgk; (93)

find ρk ∈ R, such that

f (xk + ρkdk) ≤ f (xk + ρdk), ∀ρ ∈ R; (94)

xk+1 = xk + ρkdk; (95)

gk+1 = ∇ f (xk+1); (96)
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sk = xk+1− xk; (97)

yk = gk+1− gk; (98)

Hk+1 = Hk + (s
k − Hkyk)⊗ sk + sk ⊗ (sk − Hkyk)

(yk, sk)
− (s

k − Hkyk, yk)

(yk, sk)2
sk ⊗ sk. (99)

Setk = k+ 1 and return to (93).
The tensor product of two vectorsu andv inRl is defined, as usual, as the linear mapping

fromRl × Rl intoRl such that

(u⊗ v)w = (v,w)u, ∀w ∈ Rl . (100)

In (99), (100), we have denoted by(·, ·) the Euclidean scalar product used on spaceRl ; (·, ·)
is not necessarily the dot product onRl , since we may have(v,w) = Sv · w, ∀v,w ∈ Rl ,
with S a l × l matrix, symmetric and positive definite. In fact, we have used a discrete
analogue of−d2/dt2+ I as preconditioner, the associated boundary conditions (in time)
being of the homogeneous Neumann type.

Applying the above algorithm to the solution of the discrete control problem (66) is
straightforward.

7. VALIDATION OF THE FLOW SIMULATOR

7.1. Motivation

An important issue for the flow control problem discussed in this article is the quality
of the flow simulator, i.e., of the methodology which will be used to solve the Navier–
Stokes equations modeling the flow (and also the adjoint equations) in order to compute
∇ J1t

h . For the validation of our flow simulator we have chosen as test problem the flow past
a circular cylinder at various Reynolds numbers. This test problem has the advantage of
combining a simple geometry with a rich flow dynamics and it has always been a traditional
benchmarking problem for incompressible viscous flow simulators (see, e.g., [1, 3, 5, 24]
and the many references therein). Also, this particular geometry has motivated the work of
several flow investigators from the experimental points of view (see, e.g., [33, 36, 37]).

7.2. Description of the Mesh and Other Parameters

In order to validate our incompressible viscous flow simulator we have chosen as com-
putational domain the two-dimensional regionÄ,

Ä = 5\B̄,

where5 is the rectangle(−15, 45)× (−15, 15) and B is the disk of center(0, 0) and of
radiusa = 0.5. The diameter ofB will be taken as characteristic length, implying that the
Reynolds number is defined as

Re= 2aρ|y∞|
µ

.

The simulations will be done withµ= 1/200 and 1/1000, implying that Re= 200 and
1000, forρ= 1. The finite element mesh used for the calculations at Re= 1000 is shown in
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FIG. 2. (a) Mesh used for Reynolds number 1000 and (b) its elements in the neighborhood ofB.

Fig. 2, where we have also visualized the mesh in the neighborhood ofB. When oscillatory
rotations are performed an attached layer with high velocity gradients is formed around the
cylinder, forcing us to construct attached layers of elements close to the cylinder. Outside
the layers of attached elements, the radial mesh spacing was chosen to scale with the
Reynolds number, assuming that the boundary layer thickness varies like 1/

√
Re. Next,

further away from the cylinder the mesh was stretched gradually to fit the rectangular shape
of the computational domain. Actually further information for both Re= 200 and Re= 1000
calculations is provided in Table I.

7.3. Numerical Results and Comparisons

The goal of these computational experiments is to simulate the development of the vortex
street in an unforced laminar wake behind the circular cylinder in Fig. 2, for Re= 200 and
1000. Although the simulations at Re= 1000 are two-dimensional and they do not include
the effects of 3D instabilities and turbulence, the high Re 2D simulations are still of interest

TABLE I

Discretization Parameters

Re 1t Elements Points Nodes Unknowns

200 0.005 2226 2297 9,046 11,415
1000 0.001 4104 4200 16,608 20,905
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in comparing with other 2D results and in capturing the key dynamics of the large, 2D
vortices, which clearly dominate the high Re flow experiments such as those of Tokumaru
and Dimotakis.

Actually, for Re values below 40–50 a stable steady flow is observed with formation
of a bubble in the wake. The length of the recirculating zone increases with Re, and be-
yond a certain critical value the flow becomes unstable. Alternating eddies are formed in
an asymmetrical pattern which generates an alternating separation of vortices. These vor-
tices are advected and diffused downstream, forming the well-known Karman vortex street.
In “actual life” symmetry breaking is triggered by various causes such as disturbances in
the initial and/or boundary conditions. In our simulation the computational mesh and the
boundary conditions are perfectly symmetric. As an initial condition we have taken the
symmetric solution obtained from a Navier–Stokes calculation where symmetry is system-
atically enforced at each time step by averaging. This symmetric solution (unstable for
Re sufficiently large) is itself used as initial condition for a simulation where the symme-
try constraint has been relaxed. The symmetry breaking taking place for Re sufficiently
large can be explained by the various truncation and rounding errors taking place in the
calculations.

At the initial stage of the symmetry breaking, the growth of the perturbation is linear
and the drag coefficient grows very fast at first up to a point where the growth becomes
oscillating and saturation is observed. In Figs. 3 and 4 we present the variations of the drag
and the lift versust for Re= 200 and 1000, respectively. The periodic regime which is
reached asymptotically is characterized by the frequency at which the vortices are shed. A

FIG. 3. Case of a fixed cylinder in uniform free-stream flow, Re= 200. (a) Drag and (b) lift coefficient.
(c) Power spectrum density of the lift coefficient history. The Strouhal number is 0.1978.
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FIG. 4. Case of a fixed cylinder in uniform free-stream flow, Re= 1000. (a) Drag and (b) lift coefficient.
(c) Power spectrum of the lift coefficient history. The Strouhal number is 0.2392.

spectral analysis of the lift was performed on a time interval of 30 periods, after subtraction
of the mean drag. The behavior of the drag was found to be predominantly harmonic with
a fundamental frequency much stronger than its superharmonics; see Figs. 3c and 4c for
the power spectrum of the lift coefficient history at Re= 200 and 1000, respectively (the
power spectral density calculation done in this article has been computed using the methods
described in [31]).

For comparison purposes it was found convenient to introduce theStrouhalnumber

Sn = 2a

|y∞| fn,

which is a nondimensional representation of the shedding frequency. In Table II, a com-
parison is given at various Re between the Strouhal numbers from our simulation and
those obtained experimentally and computationally by various authors ([2, 27, 33, 37]).
The agreement with Henderson’s computational data and Williamson’s experimental data
is very good for Re between 60 and 1000. For more details on these comparisons see [28].
Similarly, in Table III, the time-averaged drag coefficient is seen to be in very good agree-
ment with Henderson’s results for the steady and periodic state [22]. However, the results
of Brazaet al. [2] are inconsistent for Reynolds number 1000 and do not match other two-
dimensional simulations. A well-known effect of having just two dimensions in numerical
simulations as opposed to three is that the drag tends to be overpredicted for higher Reynolds
numbers, where three-dimensional instabilities would occur. For more details on these drag
comparisons see, again, [28].
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TABLE II

Strouhal Numbers for Various Reynolds Numbers

Sn

Re Present work Henderson [22] Williamson [37] Roshko [32] Brazaet al. [5]

60 0.1353 0.1379 0.1356 0.1370 —
80 0.1526 0.1547 0.1521 0.1557 —

100 0.1670 0.1664 0.1640 0.1670 0.16
200 0.1978 0.1971 — — 0.20
400 0.2207 0.2198 — — —
600 0.2306 0.2294 — — —
800 0.2353 0.2343 — — —

1000 0.2392 0.2372 — — 0.21

8. ACTIVE CONTROL BY ROTATION: NUMERICAL RESULTS

8.1. Synopsis

In this section we investigate via simulation various strategies for the active control by
rotation of the flow around a cylinder. In Section 8.2 we consider the dynamical behavior
of the flow under the effect of forced sinusoidal rotation of the cylinder. Then in Section 8.3
we present the results obtained when applying the optimal control strategy discussed in
Sections 2 to 6.

8.2. Active Control by Forced Sinusoidal Rotation

The active control discussed in this section is based onoscillatory rotationas in the
experiments of Tokumaru and Dimotakis [36]. If the forcing issinusoidalthere aretwo
degrees of freedom, namely thefrequency fe and theamplitudeω1 of the angular velocity.
The forcing Strouhal number is defined as

Se = 2a fe/|y∞|,

TABLE III

Drag Coefficients for Various Reynolds Numbers

CD

Re Present work Henderson [22] Brazaet al. [5] Fornberg [9]

20 2.0064 2.0587 2.19 2.0001
40 1.5047 1.5445 1.58 1.4980
60 1.3859 1.4151 1.35 —
80 1.3489 1.3727 — —

100 1.3528 1.3500 1.36 —
200 1.3560 1.3412 1.39 —
400 1.4232 1.4142 — —
600 1.4641 1.4682 — —
800 1.4979 1.4966 — —

1000 1.5191 1.5091 1.198 —
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FIG. 5. Case of a sinusoidal rotating cylinder in uniform free-stream flow, Re= 200. Power spectral density of
the lift coefficient history is shown for (a) lock-in (Se= 0.75), (b) quasiperiodic (Se= 1.25), and (c) nonreceptive
state (Se= 1.65). The natural Strouhal number (Sn) is 0.1978.

which yields the forcing angular velocity

ω(t) = ω1 sin(2πSet).

A series of simulations with different forcing frequenciesSe varying from 0.35 to 1.65
was performed at Re= 200. The amplitudeω1 of the forcing angular velocity was held fixed
to the value 6 for all simulations. Once the transients had died out, a spectral analysis of the
(time-dependent) drag minus its time-averaged value was performed, leading to the results
shown in Figs. 5a, 5b, and 5c, which correspond toSe= 0.75, 1.25, and 1.65, respectively.
Several comments are in order:

1. At Se= 0.75 a perfect lock-in to the forcing frequency can be observed, in which the
forcing frequency dominates the dynamics of the flow (in simple terms:the flow oscillates
at the forcing frequency).

2. At Se= 1.25, there is competition between the forcing frequency and the natural
shedding fundamental frequency. The dynamics corresponds to a quasi-periodic state.

3. At Se= 1.65 the flow dynamics is dominated by the natural shedding frequency
(0.2 from Table II); the forcing frequency has little influence on the flow dynamics.

These results agree with those in [26], which discusses the active control of flow around
cylinders by sinusoidal transversal motions (a kind of chattering control).

Similar experiments were performed at Re= 1000, withω1= 5.5 andSe= 0.625, 1.325,
and 1.425. The corresponding results are reported in Figs. 6a, 6b, and 6c. The computed
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FIG. 6. Case of a sinusoidal rotating cylinder in uniform free-stream flow, Re= 1000. Power spectral density
of the lift coefficient history for (a) lock-in (Se= 0.625), (b) quasiperiodic (Se= 1.325), and (c) nonreceptive state
(Se= 1.425). The natural Strouhal number (Sn) is 0.2392.

results suggest the existence of a threshold amplitude for the forcing; we need to operate
beyond this threshold for the flow to “feel” the forcing. It was further observed that this
threshold is a function of the forcing frequency: higher frequencies require higher amplitude
for the control to stay effective.

The above results suggest looking foroptimal pairs {ω1, Se} for drag minimization.
To be more precise, we consider the drag as a function of{ω1, Se} and try to minimize
this function for{ω1, Se} varying in a “reasonable” subset ofR2. For Re= 200 a method
couplingdirect searchand BFGS algorithms yieldsω1= 6 andSe= 0.74, which corresponds
to the lock-in case previously described. In Fig. 7 we visualize the contours of the drag,
considered as a function ofω1 and Se, in the neighborhood of the optimal solution. In
Fig. 8a we show the variation versus time of the optimal sinusoidal control whose action
started at timet = 0. The transition to low drag is visualized in Fig. 8b, which also shows
the shedding frequency transition. The drag reduction was found to be on the order of
30%. The lift coefficient is presented in Fig. 8c; we observe that the amplitude of the
lift oscillations is substantially reduced. Finally in Figs. 9a and 9b we show snapshots of
the uncontrolled flow and of the optimally forced flow. The significant vortex-shedding
phenomenon observed in Fig. 9a has been substantially reduced and the flow has been
quasi-symmetrized. This is qualitatively similar to the effects observed by Tokumaru and
Dimotakis [36]. Details of the vortex shedding for various values oft are reported in
Fig. 10; these figures clearly show the important reduction of vortex shedding in the cylinder
wake.
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FIG. 7. Variation of the dragCD with Se andω1 at Reynolds number 200.

Similar experiments have been carried out for Re= 1000. Qualitatively, the simulated
phenomena are identical to those observed for Re= 200; however, the drag reduction this
time is on the order of 60%. The optimal amplitude and frequency are, this time,ω1= 5.5
andSe= 0.625. The results shown in Figs. 11 to 14 are self-explanatory.

FIG. 8. The time evolution of the (a) sinusoidal-optimal forcing, withSe= 0.75 andω1= 6.00, (b) dragCD,
and (c) liftCL , at Reynolds number 200. Forcing was started at timet = 0.



106 HE ET AL.

FIG. 9. Vorticity contour plot of the wake of the unforced (a) and forced (b) flow at Reynolds number 200.

8.3. Drag Reduction by Optimal Control

In this section we present the results obtained by applying the methods discussed in
Sections 2 to 6 to active flow control by rotation, the cost function being essentially the
drag, since the following results have been obtained withε= 0 in (2.9). The values of Re
are as in Section 8.2, namely 200 and 1000. The discretization parameters are also chosen
as in Section 8.2. As initial guess for the optimal control computation we have used the
quasi-optimal forcing obtained in Section 8.2. Typically convergence was obtained in 20
iterations of the BFGS algorithm for

(gk+1, gk+1)

(g0, g0)
≤ 10−6.

Let us comment first on the result obtained for Re= 200. In Fig. 15a we represent the
computed optimal control (—) as a function oft and compare it to the optimal sinusoidal
control (––) obtained in Section 8.2. We observe that the fundamental frequency of the
optimal control is very close to the optimal frequency for the sinusoidal control. The power
spectral density of the optimal control is shown in Fig. 15b.

Similarly, we present in Figs. 16a and 16b the results corresponding to Re= 1000. From
these figures we observe that the fundamental frequency of the optimal control and the
optimal frequency for the sinusoidal control are even closer than for Re= 200.

From these simulations it follows that:

1. The fundamental frequency of the optimal control is very close to the optimal
frequency obtained by the methods of Section 8.2.
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FIG. 10. Near-wake region: Forced vortex shedding at Reynolds number 200 withSe= 0.75 andω1= 6. The
sequence represents the first three forcing period.

FIG. 11. Variation of the dragCD with Se andω1 at Reynolds number 1000.
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FIG. 12. The time evolution of the (a) sinusoidal-optimal forcing, withSe= 0.625 andω1= 5.5, (b) dragCD

and (c) liftCL , at Reynolds number 1000. Forcing was started at timet = 0.

FIG. 13. Vorticity contour plot of the wake of the unforced (a) and forced (b) flow at Reynolds number 1000.
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FIG. 14. Near-wake region: Vortex shedding frequency shifted from its natural shedding frequency
(Sn= 0.2398) to the forcing frequency (Se= 0.625), Re= 1000 andω1= 5.5. The sequence represents the first
three forcing period.

FIG. 15. The (a) optimal forcing at Reynolds number 200 and its (b) power spectral density. In (a) the dashed
line represents the optimal sinusoidal control.
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FIG. 16. The (a) optimal periodic forcing at Reynolds number 1000 and its (b) power spectral density. In (a)
the dashed line represents the optimal sinusoidal control.

2. The optimal control has one fundamental frequency and several harmonics whose
frequencies areoddmultiples of the fundamental frequency.

8.4. Drag Reduction by Control in Fourier Space

From the results described in Section 8.3, it appears that the optimal controls obtained
there were predominantly composed of a sinusoidal mode oscillating at a fundamental
frequency superposed with higher harmonic modes. This observation suggests looking for
the controls in Fourier space. More precisely the angular velocityω(t) will be of the form

ω(t) =
K∑

k=1

ωk sin(2kπSet − δk). (101)

At Re= 200, in order to see what effect additional harmonics may have on the drag
reduction, the optimal forcing was sought in the space described by (101) with three different
values ofK , namely 1, 3, and 10. The time interval for the control(0, T) was chosen so
that T = 3Tf , with Tf = 1/Se the forcing period. A piecewise optimal control strategy
was used for the solution of the periodic control problem; to be more precise, the control
time interval(0, T) was divided into sub-intervals of equal length and the optimal control
methodology previously discussed was applied successively on each of these sub-intervals.
Computational results show that the effect of the phase shiftsδi is small, suggesting taking
δk= 0 in (101).

The computational experiment reported in Figs. 17–19 corresponds to the following
scenario:

• Fromt = − T to t = 0, the cylinder is fixed, there is no control, and the flow oscillates
at its natural frequency.
• At t = 0 control starts with optimal periodic control in the class given by relation

(105).

The optimal periodic control withK = 1 (resp.,K = 3, K = 10) is shown in Fig. 17a (resp.,
18a, 19a) and its corresponding drag and lift are shown in Figs. 17b and 17c (resp., 18b and
18c, 19b and 19c). The highly oscillatory controls, drag, and lift observed in Figs. 17–19
asK increases can be explained by the fact that they were computed withε= 0 in the cost



FIG. 17. The (a) optimal periodic control, (b) the corresponding drag, and (c) the corresponding lift.K = 1.

FIG. 18. The (a) optimal periodic control, (b) the corresponding drag, and (c) the corresponding lift.K = 3.
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FIG. 19. The (a) optimal periodic control, (b) the corresponding drag, and (c) the corresponding lift.K = 10.

function (9); introducing a positive regularization parameterε into the cost function would
have the immediate effect of smoothing the above results.

The optimal periodic control obtained during the 10th piecewise control loop has been
used successfully to stabilize the system beyond that loop; the effectiveness of this approach
relies on the fact that most transient effects have been damped out. A deeper analysis of the

FIG. 20. The (a) optimal periodic control (solid) in comparison with the optimal sinusoidal (dashed) control
at Reynolds number 200. In (b) the corresponding drag is shown, with an additional reduction of 2.9% from the
optimal sinusoidal forced case.
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FIG. 21. Vorticity contour plot of the wake of the optimally forced flow at Reynolds number 200.

FIG. 22. The time evolution of the drag and its viscous and pressure components for (a) the unforced and
(b) the optimal periodic forced case, at Reynolds number 200. The total drag is represented by a solid line and the
pressure and viscosity components by× and+ respectively.

FIG. 23. Contribution of the time-averaged viscous drag as a function of the angle, at Reynolds number 200.
The solid line represents the unforced case, the dashed line the optimal sinusoidal forced case, and the dash–dotted
line the optimal periodic forced case.
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FIG. 24. The (a) optimal forcing (solid) in comparison with the quasi-optimal (dashed) forcing at Reynolds
number 1000. In (b) the corresponding drag is shown, with an additional reduction of 1.5% from the quasi-optimally
forced case.

FIG. 25. Vorticity contour plot of the wake of the optimally forced flow at Reynolds number 1000.

FIG. 26. The time evolution of the drag and its viscous and pressure components for (a) the unforced and
(b) the optimal periodic forced case, at Reynolds number 1000. The total drag is represented by a solid line and
the pressure and viscosity components by× and+ respectively.
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FIG. 27. Contribution of the time-averaged viscous drag as a function of the angle, at Reynolds number 1000.
The solid line represents the unforced case, the dashed line the forced case, and the dash–dotted line the optimally
forced case.

optimal periodic state reached withK = 5 is in order. From Fig. 20, we observe that when
the peak rotation speed is reached, a corresponding minimum in the drag occurs, at times
t = 0.6, t = 1.25, andt = 1.9. We observe that the effect of the optimal control is to flatten
the drag in the neighborhood of its minima and to sharpen it in the neighborhood of the
maxima. This can be seen in Fig. 20b at timest = 0.5, t = 1.15, andt = 1.85. Indeed, the
sharp peaks in the drag correspond to times when the forcing changes direction, i.e., crosses
zero. A very interesting feature can be seen at timest = 0.2 andt = 1.5, where a zig-zag
forcing motion corresponds to a lower peak in the drag. This optimization of the periodic
forcing leads to an extra reduction in the drag coefficient from 0.932 to 0.905, or 2.87%.

From Fig. 21, where a vorticity snapshot is presented, it can be seen that qualitatively the
structure of the wake remains unchanged from the optimal sinusoidal control forced case to
the optimal periodic forced case. This suggests that the effects of the higher frequencies are
only felt close to the boundary, but do not significantly affect the wake. The time evolution
of the drag and its pressure and viscosity contributions are shown in Fig. 22. We observe
that the reduction in the pressure drag is slightly higher than the reduction in the viscous
drag. In Fig. 23, a time-averaged profile of the viscous drag contribution over the cylinder
surface is shown, in comparison with the unforced and optimal sinusoidal forced cases. The
reduction in the viscous drag occurs mainly at the peaks of the profile, namely atθ = 60
andθ = 300.

At Re= 1000, we have, from a qualitative point of view, the same behavior as at Re= 200,
as shown in Figs. 24–27. Compared to the optimal sinusoidal control, the optimal control
brings an additional drag reduction of no more than 2%, suggesting that engineering intuition
was right when suggesting drag reduction via sinusoidal control.

9. CONCLUSIONS

Through a parametric search in forcing amplitude and frequency, minima were found
for the drag reduction coefficient for flow around a spinning cylinder at Reynolds numbers
200 and 1000. These minima corresponded to drag reductions of 31% at Reynolds number
200 and 61% at Reynolds number 1000. These results are qualitatively consistent with the



116 HE ET AL.

experimental drag reduction of 80% at Reynolds number 15,000 found by Tokumaru and
Dimotakis [36]. This suggests the potential for significant drag reduction effects, increasing
with Reynolds number, at least up to the critical Reynolds number of 300,000.

Under conditions of optimal forcing, it was noted that the wakes were smaller, were less
energetic, and had smaller spreading angles compared with the unforced case. Also, to gen-
erate the flow field necessary for maximum drag reduction, increased amplitude of forcing
was required as the oscillation frequencies increased. The quasi-optimal forcing conditions
determined by parametric search agreed closely with those found by application of optimal
control theory. The theory predicted, and it was confirmed by simulation, that further drag
reduction could be achieved by adding higher harmonics to the forcing oscillations. This
was achieved by extending the time interval of minimum drag at the expense of slightly
higher, narrower peaks of maximum drag; however, the improvement is fairly small.

While drag reduction through oscillatory rotation provides an excellent demonstration
of the application of optimal forcing control theory, it is clearly of little practical sig-
nificance. In that direction the use of low-order models (based for example onproper
orthogonal decomposition(POD)) may lead to control techniques less computationally de-
manding than the one discussed in the present paper (these methods are discussed in detail in
[14, 15], which also provide further references and point out current limitations of the re-
duced model approach). However, the application of the theory discussed in this article to
other forcing techniques such as variable (in space and time) blowing and suction at the
walls could lead to some new forcing strategies for more complex shapes like airfoils. We
are currently engaged in such studies, the results of which will be reported in the near future.
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