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active control and drag optimization of incompressible viscous flow past cylinders,
using the two-dimensional Navier—Stokes equations as the flow model. The compu-
tational methodology relies on the following ingredients: space discretization of the
Navier—Stokes equations by finite element approximations, time discretization by
a second-order-accurate two-step implicit/explicit finite difference scheme, calcula-
tion of the cost function gradient by the adjoint equation approach, and minimization
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1. INTRODUCTION

Engineers have not waited for mathematicians to successfully address flow control pi
lems (see, e.g., Refs. [7, 19] for a review on flow control from the engineering point
view); indeed, Prandtl as early as 1915 was concerned with flow control and was desigt
ingenious systems to suppress or delay boundary layer separation [30]. The past de
has seen an explosive growth of investigations and publications of a mathematical na
concerning various aspects of the control of viscous flow, good examples being provi
in [18, 34]. Actually these two volumes also contain some articles related to the compt
tional aspect of the optimal control of viscous flow, but usually, the geometries are fai
simple and the Reynolds numbers fairly low. It is interesting to observe thdotiveal of
Computational Physickas published recently articles on the above topics (see Refs. [1
23, 25]); however, in those articles, once again, the geometry is simple and/or the Reyn
number is low.

The main goal of this article is to investigate computational methods for the acti
control and drag optimization of incompressible viscous flow past cylinders, using the tv
dimensional Navier—Stokes equations as the flow model. The computational methodol
relies on the following ingredients: Space discretization of the Navier—Stokes equati
by finite element approximations, time discretization by a second-order-accurate two-¢
implicit/explicit finite difference scheme, calculation of the cost function gradient by th
adjoint equation approach, and minimization of the cost function by a quasi-Newton mett
a la BFGS. Motivated in part by the experimental work of Tokumaru and Dimotakis [3€
the above methods have been applied to boundary control by rotation of the flow aro
a circular cylinder and show 30 to 60% drag reduction, compared to the fixed cylinc
configuration, for Reynolds numbers in the range of 200 to 1000.

From a methodological point of view, some of the methods used here are clearly rele
to those employed by our former collaborator M. Berggren in [4] for boundary control &
blowing and suction of incompressible viscous flow in bounded cavities. In fact, the mett
described in the present article has been extended in [8] to the drag reduction of visc
flow around a cylinder by blowing and suction, leading to further “net” drag reductio
compared to the control by rotation; an article to appear in the open literature is in p
paration.

The organization of the remainder of the paper is as follows: In Section 2 we formulate
flow control problem and address its time discretization in Section 3. The important probl
of the space discretization by the finite element method is discussed in Section 4; spe
attention is given there to velocity spaces, which are discretely divergence-free in orde
reduce the number of algebraic constraints in the control problem. The full discretizatior
the control problem is addressed in Section 5. Since we intend to use solution methods b
on a quasi-Newton algoritha la BFGS (see Section 6), attention is focused in Section
on the derivation of the gradient of the fully discrete cost function via the classical adjo
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equation method. The flow simulator (actually a Navier—Stokes equations solver) is furt
discussed in Section 7, where it is validated on well-documented flow-around-cylinder |
problems for various values of the Reynolds number. Finally, the results of various numer
experiments for flow control past a cylinder are discussed in Section 8; they definitely st
that a substantial drag reduction can be obtained by an appropriate rotation of the cylir

2. FORMULATION OF THE FLOW CONTROL PROBLEM

2.1. Fluid Flow Formulation

Let Q be a region oY (d = 2, 3 in practice); we denote by the boundan<2 of Q.
We assume tha is filled with a Newtonian incompressible viscous fluiddensityp and
viscosityu; we assume that the temperature is constant. Under these circumstances the
of such a fluid is modeled by the following system of Navier—Stokes equations:

play+(y-Vyl=V-o+pf inQ2x(OT), (1)
V.y=0 in Q2 x (0, T) (incompressibility condition (2)

In (1), (2),y = {yi}_; denotes thevelocityfield, = the pressuref a density of external
forces per mass unit, and=o (y, 7)) the stress tensor, defined by

o =2uD(y) — I,

with therate of deformation tensdd(y) defined by

1
D) = 5(Vy+ vyh.

We also have

d

9 d. 52 Vi 4 9z
827’ sz —s, V — ;’ VZ: L
T z;ax.2 Y= 5 OV jz_:ly’ ox;
- i=1
In the above equation®, T) is thetime intervalduring which the flow is considered.
Equations (1) and (2) must be completed by further conditions, suchiagtihlecondition

y(0) =yo (WithV - yo = 0) 3

and boundary conditions. Let us consider the typical situation, of interest to us, describe
Fig. 1, corresponding to an external flow around a cylinder of cross-seBfiame assume
that the classical two-dimensional reduction holds.

In fact,I’', UTqU 'y U Ts is anartificial boundary, which must be taken sufficiently far
from B so that the corresponding flow is a good approximation of the unbounded exter
flow aroundB. Typical boundary conditions are

Y=V ON(yUINUTS) x (0, T), 4)

on=20 onTy x (0, T) (downstream boundary conditipn (5)
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FIG. 1. External flow around a cylinder of cross-sectiBn

with n theunit vectorof the outward normal ofi. We are intentionally vague concerning the
boundary conditions o8B, since they will be part of the control process. Let us concludk
this paragraph by recalling that tReynolds numbeRe is classically defined by

Re=pUL/pu, (6)

with U acharacteristic velocity|y.|, here) and. acharacteristidength (the thickness d8,
for example).

Our goal in this article is to prescribe @B boundary conditions of thBirichlet type
(i.e., velocity imposed 0@ B) so that some flow-related performance criterion (the cos
function) will be minimized under reasonable constraints on the control variables.

2.2. Formulation of the Control Problem

The flow control problem to be discussed in this article consists of minimizihgg
related cost function via controls acting ém; this problem can be formulated (using
classical control formalism) as

ueld,

(7)
Ju) < J(v), Yvel,

where, in (7), theontrol spacé/ is a vector space of vector-valued functiandefined on
aB x (0, T) and satisfying

/ v(t)-nds=0 fort € (0, T), (8)
B

and where theost function Jis defined by

€ T T T
J(v)=(/ ||v<t>||§dt+// |atv<x,t>|2dsdt>+/ Paydt,  (9)
2 0 0 JoB 0

with €(>0) aregularizationparameter.
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In (8), (9), we have used the following notation:

e ¢(t) for the functionx — ¢(x, t).

e dsfor the surface measure orB.

e |||l for a norm ofv defined ond B, involving space derivatives of ordet, with
« possibly noninteger (readers afraid of these mathematical complications do not hav
worry, since in this article we shall consider boundary controls that are functiareby).

e Py(t) is the power needed to overcome, at tilmehe drag exerted oB in the
direction opposite to that of the motioRy(t) is defined by

Py(t) =/ on-(V—Yyy)ds (20)
B

e Finally,y is the solution to the following Navier—Stokes system:

ploy+ (Y- V)] =V .o + pf in Q2 x (0, T), (11)
V.y=0 inQ x (0, T), (12)

y(©0) = Yo (with V- yo = 0), (13)

on=20 onlg x (0, T), (14)

Y=V on(T'yUI'yUTs) x (0, T), (15)

y=v ondB x (0, T). (16)

Remark 2.1. The flux condition (8) is not essential and can be easily relaxed if, fc
example, the downstream boundary conditions are of Neumann type (like those in (14

Remark 2.2. The Navier—Stokes equation (11) can also be written
pldy + (- V)Yl — uV?y + Vo =pf  inQx (0, T);
however, form (11) is better suited to the drag reduction problem (7), since, as (10)

involves the stress tensert

Remark 2.3. In the particular case of incompressible viscous flow we have

T

T T
/ Pq(t) dt =/ Eq(t) dt 4+ (K(T) — K(0)) +/ Pe(t) dt
0 0 0
T T
—}—/ Poo(t)dt—/ P (t) dt, a7)
0 0

where, in (17),

Eq(t) = ZMfQ|D(y — VYoo)|? dX is theviscous dissipation energy

K(t) = 4 [5ly(t) — Yoo|? dx is akinetic energy

P.(t) = §f88|v — Yoo |?v - ndsis acontrol related power

Po(t) = %frgo Y — Vool?Y - ndsis adownstream boundary related power
P (t) = ,onf(t) - (Y(t) — Yoo) dX is theexternal forcing power
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Some observations are in order, such as:

1. If T4 “goes to infinity” in the O x; direction, thery — y,, which implies in turn
thatP,, — O.
2. Whenever the control is absent, ixe= 0, we haveP(t) = 0.

We can summarize relation (17) by noting that “the drag work is equal to the energy dis
pated by viscosity the kinetic energy variation between 0 ahd- the control associated
work + the downstream boundary associated wettke external forcing work.” The above
observation has the following consequence: instead of minimizingdefined by (9) we
can minimize the cost functiod(-) defined by

€ T T T
J(V) = = / ||v(t)||2dt+/ |8cv(x, t)|>ds dt +/ Eq(t) dt
2\Jo * o Jas 0

T T T

+ (K(T) — K(0)) +/0 P (1) dt—i—/o P (t) dt —/0 P:(t) dt;

this function is simpler than the one defined by (9) since it does not involve bound:s
integrals of stress-tensor-related quantities. However, we kept working with the cost funct
defined by (9) using an appropriate variational formulation of the discrete Navier—Stol
equations (see Section 4.3 for details); we can easily compute an accurate approxim:
of the drag (actually second order accurate as shown in [35], where a similar approach
been used for computing the drag coefficients of a sphere).

In order to applyquasi-Newton-type methodsla BFGS to the solution of the control
problem (7), it is instrumental to know how to compute the gradient of the cost functi
JAY(-), obtained from the full space-time discretization of the control problem (7), sinc
we shall solve the discrete variant of problem (7) via the (neceseptihality condition

VI (upt) =0,

whereuj! is a solution of the fully discrete control problem. The calculatiowdf* will
be discussed in Section 5.

3. TIME DISCRETIZATION OF THE CONTROL PROBLEM

3.1. Generalities

In order to facilitate the task of the reader unfamiliar with control methodology (n
to say philosophy) we are going to discuss first tinge discretizatiorissue. The space
and consequently full space/time discretization issues will be addressed in Sectiol
This approach of fractioning the computational difficulties has the definite advantage t
some practitioners will be able to use the material in this article for other types of spe
approximations than the finite element ones discussed in Section 4 (one may prefer spe
methods, for example).

3.2. Formulation of the Time Discrete Control Problem

We define first a time discretization steéq by At = T/N, with N a (large) positive
integer. Concentrating on problem (7), we approximate it by
uAt c uAt

18
JAt(uAt) < JAt(V), YV e Z/{At7 ( )
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with
UAt = AN, (19)

= {A|Ae(H“(89))d,/ A~nds=0}, (20)
B

and

_Vn 1

N
JA () = At (Z V)12 + Z ) + At P, (21)
n=1
where, in (21),Ry is the discrete drag power defined (with obvious notation) by
Pd =/ oy, 7N - (V" — yeo) ds
aB

with {(y", #")}N_; obtained fromv via the solution of the following semi-discrete Navier—
Stokes equations:

y° = Yo. (22)
yt—y° 0 o) _ 21,10 1 1
/0( At + -V)y | =V.o 3y +3y,n + pof inQ, (23)
v.yt=0 inQ, (24)
21,10 1\, _
olzy +zy,7-|n=0 onTy, (25)
37 "3
Y =Yoo onTL UTNUTs, (26)
yt=v onoB, @27)

andforn=2,..., N
p((3/2)y” —2y" 14 (1/2)y"2

+ ("t =y vyt~ y”-z))

At
=V-.oW", ")+ pf" in Q, (28)
V.y'=0 ing, (29)
oy, 7MHn=20 onTly, (30)
V' =Y onyUTNUTSs, (31)
y" =" ondB. (32)

The above scheme is a semi-implicit, second-order-accurate two-step scheme.
Anticipating the finite element approximation to take place in the following section, w
can rewrite (23)—(32) ivariational form We obtain thus

yt—y° / 2, 1,
czdx+2u [ D[ Syt + =y°) : D(z)d
p/ﬂ AL ZX+/LQ<3V+3Y (2)dx

+p/(y°-V)y°~zdx—/n1V~zdx
Q Q

Z'O/Qfl .zdx,  Vze Vo, (33)
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/v -ylqdx =0, vq € L3(Q), (34)
Q
y'=y.  on[LZUINUTs, (35)
y!=vl  ondB; (36)

andforn=2,..., N

) / (3/2y" — 2y" 1 + (1/2)y"2
Q

~zdx+2,u,/D(y”) :D(2)dx
At o

+p / ("t —y"2) . V)Y —y"?) - zdx— /n“v -zdx
Q Q

=p/f”~zdx, vz € V, (37)
Q
/v .y"gdx =0, v € L2(RQ), (38)
Q
V' =Y onl'yUI'yUTs, (39)
y' =" ondB. (40)

In (33), (37), we have used the notation

d
T:S= Zztiij

d
i=1 j=1

to denote the scalar productIRﬁ12 of the two tensor3 = {tj; }ﬁjzl andS = {s; }id,j=1! and
the spacé/y is defined by

Vo={z|ze (H'()% z=0 onl UINUTsUJB}. (41)

3.3 Comments on the Time Discretization of the Control Problem (7)

Since the time discretization step used in Section 3.2 is a two-stepsiagjag procedure
is required; the one we have used, namely, (23)—(27), leads to a generalized Stokes pro
to obtain{y*, =1} which has the same coefficients as the ones used to dytain"} from
v andy"1, y"—2. As we shall see later on in this article, scheme (22)—(32), albeit part
explicit, has shown very good robustness properties when applied to the solution of ¢
reduction problems.

4. FULL DISCRETIZATION OF THE CONTROL PROBLEM

4.1. Synopsis

In order tospatially discretizehe control problem (7), we are going to udinéte element
approximation, since this kind of approximation is well suited to handling complicate
boundaries and boundary conditions. The discretization to be used combines a contint
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piecewiseQ,-approximation for the velocity and a discontinud®sapproximation for the
pressure (withP; (resp.,Q2) the space of the polynomials ia, x, of degree<1 (resp., of
degree<2 with respect to each variable)). This approximation satisfidiseete inf—sup
condition implying that the discrete problems are well-posed and the approximation
convergent (see, e.g., [6, 11, 17, 29] for the finite element approximation of the Navi
Stokes equations).

4.2. Discrete Flow Model

In order to fully discretize the semi-discrete model (22)—(32) we are going to mimic |
equivalent formulation. Doing so, we obtain

y° =yon (a convenient approximation gf):; (42)

and

yh yh 2., 15).
2 D[ = — :D
o ! -zdXx+ M/Qh (3yh+ 3Yh (2)dx

,0/ (yﬂ-v)yﬂ-zdx—/ iV - zdx
Qh Qh

. zdx, vz € Von, (43)
Qn
/ V.ytqdx=0, vq € Py, (44)
Qn
Vi =Y  ONTypUTNUTsh, (45)
yp =V ondBy; (46)

thenforn=2,..., N,

(3/2yp — 2yn "t + (1/2)yp 2
n At

+p/ (2t =y V) (2ypt - ﬂz).zdx—/ 7'V - zdx
Qh Qh

~zdx+2/,L/ D(yp) : D(2) dx
Qn

f*. zdx, Yz € Von, (47)
Qn
/ V-ypgdx =0, vq € Py, (48)
Q2
YE =Yoo onI'hU'NhUT'sh, (49)
yh=V" ondBy. (50)

In formulation (42)—(50) we require

yp € Vh, vn=0,1,...,N, (51)
h
e Ph,  Vn=1...,N. (52)



92 HE ET AL.

The space¥;, andP, are defined as

Vh = {z]ze (C%Q)% zlk € Q% YK € On},
Ph={d|qeL%Qn), qlk € P, YK € On},

whereQy, is a “quadrangulatiofi of 2y, (Q24: finite element approximation «t) and

Qxx ={¢lpoFk € Qa},

(53)
(54)

(55)

with Fx a well-chosen one-to-one mapping from 10?7 into K, such thatFx € Q3. We

also need to introduce the following subspa&tg of Vi:
Von=1{z|z€eVh, z=0 onT'ynUNhUTsh UdBg}.
Let us introduce now the following subspaces/@fandVop:
Wy = {z|zevh, /K gV -zdx=0,vg e P, VK € Qh},
Won = Wh N V.
A formulation equivalent to (42)—(50) is provided then by
Ya=Yon  inWp

and

Yi — Yo
o At

=p[ fL.zdx, VzeWen, VYieWh,
Qn

Yh = Yoo onl'yhUNh U T s,

onoBy;
then forn=2,..., N,

(3/2yp — 2yp "+ (1/2)yp 2
n At

o (@R R 9) R i) 20
Qp

~zdx+2,u/ D(yp) : D(2) dx
Qn

=p [ " zdx, vz € Wqp, Yp € Wh,
Qn

Yh = Yoo onI'yh UNhUTsh,

yp = V" ondB,.

(56)

(57)

(58)

(59)

2 1
.zdx+2u/ D(éyﬁ+§yﬂ) :D(z)dx+p/ (¥ V)y3 - zdx
Qh Qh

(60)

(61)
(62)

(63)

(64)
(65)
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The pressure unknown has been eliminated, at the price of having to use finite element sy
defined by nontrivial linear constraints and also the necessity to construct vector base
W, andWgy, satisfying these constraints. For more details on approximately divergen
free element spaces and the construction of the corresponding basis (shape) function:
e.g., Chapter VI in [6] (and the references therein).

4.3. Formulation of the Fully Discrete Control Problem

Using the above approximation of the Navier—Stokes equations yields the discrete cor
problem

uht e UM,
(66)
Fup') = v, welt,
with
Ut = A, (67)
Ah:{)\’/ A-nds=0, A=2X ,S\ewh}, (68)
aB aB
and
c N N W — -1 2 N
JAv) = > At( STIVIE+Y — > + At P (69)
n=1 n=2 0 n=1

where the discrete drag powBf',, is defined by

1_,,0
P, = p/ LMV" .ygdx+2u/
J Qh Q

2 1
D(Syﬁ - SVE) : D(yp) dx
h

+p/ (yﬁ-V)yﬁ-yédX—p/ fl.ygdx, (70)
Qn Qn

andforn=2,..., N

(3 2) n_ 2 n—-1 + (1 2) n—2
Pin=r Ll 4y Lt 'deX+2u/Q D(yn) : D(vh) dx
h h

+ "/Q (=92 - V)Rt =yh?) - ypdx—p ypdx (D)
h h
with yp a “lifting” (i.e., an extension) o" —y., contained inWy and vanishing on
Iuh UNh UTsh. The above quantities approximd®g§ defined in Section 3.2. In (70) and
(71), {yR}\, is obtained fronv" via the solution of (59)—(65).

Remark 4.1. Using the facts thag, andyj are approximately divergence-free, tlygt
vanishes away fromiB, and thatyp satisfies the discrete momentum equations (59)—(65
it can be shown that the relations (70) and (71) are discrete analogues of the drag p
(10). For more details on the variational approximation of boundary fluxes in the cont
of the Navier—Stokes equations, see, e.g., [16, 35].
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5. GRADIENT CALCULATION

Computing the gradien? J* of functional J2 is at the same time straightforward
and complicated; let us comment on this apparently paradoxical statement: computing
gradient is straightforward in the sense that it relies on a well-established and systema
methodology which has been discussed in many articles (see, e.g., [4, 12, 13, 20, 21]
the other hand the relative complication of the discrete state equations (59)—(65) make:
calculation ofv J©*! a bit tedious as we can guess from the relations just below. Indeed, t
gradientv J2! (v) of functional J2* atv is given by

N n

n|. -nds

(VIA(wv), w) = At § <gﬂ— f"?gi“ds, w“>, vw e U2, (72)
n=1 0B

with

N _ yN-1 3/2 N
<9L“’WN>=€(VN,WN)C(+6<H,WN>+p/ S/2Ph N gy
Qn

(At)2 At
+2M/ D(PY) : DN dx p (3/2¥) — 90+ W/2% 7 n g,
@ o At
+ p/Qh (25 yh?) - V](2yn L yp %) - W dx
—1-2,41,/Q D(y}) : DA™y dx — p i N W dx, (73)
. :

and

oyN-1 _ yN-2 _ N
<9rl:‘_1’ WN—1> — (N1, wN-1), +€< wN-t

(At)?

N-1 o N
M ANLdx 4+ ZM/D(pa‘_l) : D(\’IVVNil)dX
Qh At Qh

+p/ (2Nt =yh7?) - V] - (2py) dx
Qn

+o [ @ w2yt —yN2) - (2pN) dx
Qn

G/2yn =2y 2+ (1/2)y) 3
n At

o [ @A =7 V@A - ) - @ o
Qn

+p ~WN"Ldx

+2M/ D(y,g“-l):D(wN—l)dx—p/ N1 wN-1dx, (74)
Qn Q

h
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thenforn=N-2,..., 2,

n_yn-1_ yn+l |
(At)? ’

(3/2)pp — 2pptt + (1/2)pp*?
o At

o [ [ =) V]G - (297 dx
_,’_IO/Q [(2y2+1 n) ](W) ( n+2)dx

(" V)(2yp —ynt) - (207) dx

Qn

(W V) (2yp*™ = yp) - (—ppt?) dx

Qn

(3/2yp — 2yt + (1/2yp°
+p At :
Qn

2v
(gh, W") = e(v",w"), + e(

~”dx+2u/ D(pp) : DOW™) dx
Qp

W" dx

o[ [@RT ) VIR - R - ) dx
Qn

+2M/ D(yp) : DOW" dx—p [ fll-W"dx, (75)
Qn

Qn

and, finally, forn = 1,

(g, W) = e(vh, wh), + € viove w!
n T (a2’

1 o2 3
4o/ P 2P+ (1/2)ph ~v”v1dx+2u/ D<2pﬁ> : DOW*) dx
n At o 3

4 [ (@~ 9) - V] @) (208) o
+p/9 (292 — yb) - V] @) - (—p) dx
(w V) (2ys — Yn) - (2p7) dx

W V) (2y2 = yi) - (—p3) dx

Qn

+p yhAtyh lderp/ (Yo V) (¥h) - (%) dx
Qn

Qn

2 1
+2M/ D(—yﬁ + —yﬁ) DY dx—p [ - Wldx. (76)
Qh 3 3 Qh
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In (73)—(76)W" is a lifting of w" contained inVy, and vanishing o, , U 'y.p U s, and
pn € W is the solution of the discrete adjoint system

. (3/2'0# -zdx+2M/QhD(p,'3) :D(z)dx =0, vz € Won, (77)
py =0 onTypn UlNKUTsh,
(78)
p=v) -y,  0ndBy; (79)
and

N-1 o N
G/2py " =200 4,40, / D(pM?) : D() dx
o At Qn

+ /Q (2= yi?) - V]2 (20)) dx

Z-V)(2yf T —yp?) - (2p))dx =0,  Vze Wq, (80)
Qn

p,?*l =0 onTyh UlNhUTsh, (81)

pht=v"t -y,  onaBy; (82)

thenforn=N -2, ..., 2,

(3/2)pp — 2pf*t + (1/2)ppt?
o At

o [ [@R=¥)- V]2 (267 ax
o [ @R =3R) - V]2 (P2 ox

+p/9 (2-V)(2y — yiY) - (20f) dx

zdx—i-ZM/ D(pp) : D(z) dx
Qn

@z -V)(2yp™t —yp) - (—pp™?) dx =0,  Vze Wq, (83)
Qn

pﬂ =0 on Fu,h U FN,h U I‘S,hy (84)

Ph=Vh—VYe  ONJIBy; (85)

and, finally, forn = 1,

1_ 912 3
bt — 2p2 + (1/2)p} .de+2u/ D(Zp@ . D(2) dx
o At Qn 3

+o [ (@43 V]2 (298) ax
+p/ﬂ (22 = yi) - V]z- (=p3) dx
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+o [ @ V(% -yD) - (2p}) dx

Qn
+p [ @ V)(2yi—yi) - (—p3)dx=0,  VzeWq, (86)
Qn
pt=0 onTyh UlNhUTsh, (87)
PL=Vi—VYoo  ONIBy. (88)

Once VJA! is known, via the solution of the above adjoint system, we can deri\
optimality conditions which enable us to solve the discrete control problem (66) by varic
kinds of descent methods such as conjugate gradient, BFGS, etc. The BFGS solutic
(66) will be discussed in Section 6 hereatfter.

Remark 5.1. As observed by one of the referees the tal — vN-1)/(At)2, wN)
(resp.,((v* — v?)/ (A1), wh)) in (73) (resp., in (76)) can be interpreted(@vN — vN-1 —
vNth /(A2 wN) (resp.,((2vt — vO — v?)/(At)Z, wh)) completed bwN = vN+1 (resp.,
vl =0, i.e., by the discrete analoguesa¥|,_o = 3;v|;—t = 0, natural boundary condi-
tions associated to the functionﬂfaB [3:v(X, t)|2ds dt

6. ABFGS ALGORITHM FOR THE DISCRETE CONTROL PROBLEM

In order to solve the discrete control problem (66) we shall employasi-Newton
methodh la BFGS (see, e.g., [27] for BFGS algorithms and their implementation); such
algorithm reads as follows when applied to the solution of a generic optimization probl
such as

xeR,
f(x) < f(y), Vy e R". (89)
If f is smooth enough the solution of problem (89) satisfies also
Vv f(x) = 0. (90)
The BFGS algorithm applied to the solution of (89), (90) takes the form
x°eR', H? e LR, R) are given (91)
g% = v x°). (92)
Fork > 0, assuming that¥, H¥, andg* are known, we proceed as follows:
d“ = —H*g"; (93)
find ok € R, such that
fOK 4 od) < T+ pd%), Vo eR; (94)
X = XK 4+ pdX; (95)

gk+l =V (Xk+1); (96)
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sk = xk+1 _ xk, (97)
y =gt —dS (98)

il « (Sk _ Hkyk) ® Sk + Sk ® (Sk _ Hkyk) (Sk _ Hkyk, yk) ‘ ‘
H*t = H* 4 . R s‘®s.  (99)

Setk = k+ 1 and return to (93).
The tensor product of two vectansandv in R' is defined, as usual, as the linear mapping
fromR' x R' into R' such that

U v)w = (v, w)u, Yw e R (100)

In (99), (100), we have denoted by -) the Euclidean scalar product used on splce-, -)
is not necessarily the dot product B&h, since we may havév, w) = Sv - w, Vv, w € R,
with Sal x| matrix, symmetric and positive definite. In fact, we have used a discre
analogue of-d?/dt?> + | as preconditioner, the associated boundary conditions (in tim
being of the homogeneous Neumann type.

Applying the above algorithm to the solution of the discrete control problem (66)
straightforward.

7. VALIDATION OF THE FLOW SIMULATOR

7.1. Motivation

An important issue for the flow control problem discussed in this article is the quali
of the flow simulator, i.e., of the methodology which will be used to solve the Navier
Stokes equations modeling the flow (and also the adjoint equations) in order to comg
V J*. For the validation of our flow simulator we have chosen as test problem the flow p:
a circular cylinder at various Reynolds numbers. This test problem has the advantag
combining a simple geometry with a rich flow dynamics and it has always been a traditio
benchmarking problem for incompressible viscous flow simulators (see, e.g., [1, 3, 5,
and the many references therein). Also, this particular geometry has motivated the wor
several flow investigators from the experimental points of view (see, e.qg., [33, 36, 37]).

7.2. Description of the Mesh and Other Parameters

In order to validate our incompressible viscous flow simulator we have chosen as cc
putational domain the two-dimensional regi@n

Q = I1\B,

wherelIl is the rectangl€—15, 45) x (—15, 15) and B is the disk of cente(0, 0) and of
radiusa = 0.5. The diameter oB will be taken as characteristic length, implying that the
Reynolds number is defined as

2a0|Yoo
Re— )% |_

n

The simulations will be done witlx =1/200 and ¥1000, implying that Re-200 and
1000, forp = 1. The finite element mesh used for the calculations at R800 is shown in
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FIG. 2. (a) Mesh used for Reynolds number 1000 and (b) its elements in the neighborhBod of

Fig. 2, where we have also visualized the mesh in the neighborhd®dwhen oscillatory
rotations are performed an attached layer with high velocity gradients is formed around
cylinder, forcing us to construct attached layers of elements close to the cylinder. Out:
the layers of attached elements, the radial mesh spacing was chosen to scale witl
Reynolds number, assuming that the boundary layer thickness varies/ik@el Next,
further away from the cylinder the mesh was stretched gradually to fit the rectangular sh
of the computational domain. Actually further information for both=R200 and Re= 1000
calculations is provided in Table I.

7.3. Numerical Results and Comparisons

The goal of these computational experiments is to simulate the development of the vo
street in an unforced laminar wake behind the circular cylinder in Fig. 2, fae R0 and
1000. Although the simulations at Re 1000 are two-dimensional and they do not include
the effects of 3D instabilities and turbulence, the high Re 2D simulations are still of inter

TABLE |
Discretization Parameters

Re At Elements Points Nodes Unknowns

200 0.005 2226 2297 9,046 11,415
1000 0.001 4104 4200 16,608 20,905




100 HE ET AL.

in comparing with other 2D results and in capturing the key dynamics of the large, ~
vortices, which clearly dominate the high Re flow experiments such as those of Tokum
and Dimotakis.

Actually, for Re values below 40-50 a stable steady flow is observed with formati
of a bubble in the wake. The length of the recirculating zone increases with Re, and
yond a certain critical value the flow becomes unstable. Alternating eddies are forme«
an asymmetrical pattern which generates an alternating separation of vortices. These
tices are advected and diffused downstream, forming the well-known Karman vortex str
In “actual life” symmetry breaking is triggered by various causes such as disturbance:
the initial and/or boundary conditions. In our simulation the computational mesh and
boundary conditions are perfectly symmetric. As an initial condition we have taken t
symmetric solution obtained from a Navier—Stokes calculation where symmetry is syste
atically enforced at each time step by averaging. This symmetric solution (unstable
Re sufficiently large) is itself used as initial condition for a simulation where the symm
try constraint has been relaxed. The symmetry breaking taking place for Re sufficier
large can be explained by the various truncation and rounding errors taking place in
calculations.

At the initial stage of the symmetry breaking, the growth of the perturbation is linei
and the drag coefficient grows very fast at first up to a point where the growth becon
oscillating and saturation is observed. In Figs. 3 and 4 we present the variations of the
and the lift versug for Re=200 and 1000, respectively. The periodic regime which i
reached asymptotically is characterized by the frequency at which the vortices are she

b
15— : (@ ! — 0.8 (E)
141} : : : : H H 06l :
04}
E 1.3. E
2 g 02
S 12f- :
2 -
A= L
2" = -02}
S =
= ‘ ; ; : 204 b
09 3 06
08570 20 30 40 50 60 70 80 90 100 80 10 20 30 40 50 60 70 80 90 100
time time

('C)

power spectral density (log,q)

N

0 02040608 1 12 14 1618 2
frequency

FIG. 3. Case of a fixed cylinder in uniform free-stream flow, R&00. (a) Drag and (b) lift coefficient.
(c) Power spectrum density of the lift coefficient history. The Strouhal numbet 8.
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FIG. 4. Case of a fixed cylinder in uniform free-stream flow, Re.000. (a) Drag and (b) lift coefficient.
(c) Power spectrum of the lift coefficient history. The Strouhal number239P.

spectral analysis of the lift was performed on a time interval of 30 periods, after subtract
of the mean drag. The behavior of the drag was found to be predominantly harmonic v
a fundamental frequency much stronger than its superharmonics; see Figs. 3c and 4
the power spectrum of the lift coefficient history at R€00 and 1000, respectively (the
power spectral density calculation done in this article has been computed using the met
described in [31]).

For comparison purposes it was found convenient to introduc8ttbehalnumber

2a
Yool

which is a nondimensional representation of the shedding frequency. In Table I, a cc
parison is given at various Re between the Strouhal numbers from our simulation
those obtained experimentally and computationally by various authors ([2, 27, 33, 3
The agreement with Henderson’s computational data and Williamson's experimental
is very good for Re between 60 and 1000. For more details on these comparisons see
Similarly, in Table Ill, the time-averaged drag coefficient is seen to be in very good agr
ment with Henderson'’s results for the steady and periodic state [22]. However, the res
of Brazaet al.[2] are inconsistent for Reynolds number 1000 and do not match other tw
dimensional simulations. A well-known effect of having just two dimensions in numeric
simulations as opposed to three is that the drag tends to be overpredicted for higher Rey!
numbers, where three-dimensional instabilities would occur. For more details on these
comparisons see, again, [28].

S1=

fn,
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TABLE Il
Strouhal Numbers for Various Reynolds Numbers

S

Re Presentwork  Henderson [22]  Williamson [37] Roshko [32] Beetza. [5]

60 0.1353 0.1379 0.1356 0.1370 —

80 0.1526 0.1547 0.1521 0.1557 —
100 0.1670 0.1664 0.1640 0.1670 0.16
200 0.1978 0.1971 — — 0.20
400 0.2207 0.2198 — — —
600 0.2306 0.2294 — — —
800 0.2353 0.2343 — — —

1000 0.2392 0.2372 — — 0.21

8. ACTIVE CONTROL BY ROTATION: NUMERICAL RESULTS

8.1. Synopsis

In this section we investigate via simulation various strategies for the active control
rotation of the flow around a cylinder. In Section 8.2 we consider the dynamical behav
of the flow under the effect of forced sinusoidal rotation of the cylinder. Then in Section €
we present the results obtained when applying the optimal control strategy discusse
Sections 2 to 6.

8.2. Active Control by Forced Sinusoidal Rotation

The active control discussed in this section is basedsrillatory rotationas in the
experiments of Tokumaru and Dimotakis [36]. If the forcingsinusoidalthere aretwo
degrees of freedopmamely therequency § and theamplitudew; of the angular velocity.
The forcing Strouhal number is defined as

S= 2afe/|yoo|a

TABLE 1lI
Drag Coefficients for Various Reynolds Numbers

Co

Re Presentwork  Henderson [22] Bra#taal.[5] Fornberg [9]

20 2.0064 2.0587 2.19 2.0001
40 1.5047 1.5445 1.58 1.4980
60 1.3859 1.4151 1.35 —
80 1.3489 1.3727 — —
100 1.3528 1.3500 1.36 —
200 1.3560 1.3412 1.39 —
400 1.4232 1.4142 — —
600 1.4641 1.4682 — —
800 1.4979 1.4966 — —

1000 1.51901 1.5091 1.198 —
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FIG.5. Case of a sinusoidal rotating cylinder in uniform free-stream flows-R80. Power spectral density of
the lift coefficient history is shown for (a) lock-irs{=0.75), (b) quasiperiodic% = 1.25), and (c) nonreceptive
state § = 1.65). The natural Strouhal numbes,j is 0.1978.

which yields the forcing angular velocity
w(t) = w1 Sin(27 St).

A series of simulations with different forcing frequenci&svarying from 0.35 to 1.65
was performed at Re 200. The amplitude; of the forcing angular velocity was held fixed
to the value 6 for all simulations. Once the transients had died out, a spectral analysis o
(time-dependent) drag minus its time-averaged value was performed, leading to the re
shown in Figs. 5a, 5b, and 5¢, which correspon&te- 0.75, 1.25, and 1.65, respectively.
Several comments are in order:

1. AtS =0.75aperfectlock-in to the forcing frequency can be observed, in which tf
forcing frequency dominates the dynamics of the flow (in simple tethesflow oscillates
at the forcing frequengy

2. At S =1.25, there is competition between the forcing frequency and the natul
shedding fundamental frequency. The dynamics corresponds to a quasi-periodic state

3. At S =1.65 the flow dynamics is dominated by the natural shedding frequen
(0.2 from Table Il); the forcing frequency has little influence on the flow dynamics.

These results agree with those in [26], which discusses the active control of flow aro
cylinders by sinusoidal transversal motions (a kind of chattering control).

Similar experiments were performed atR4000, withw; =5.5 andS, = 0.625, 1.325,
and 1.425. The corresponding results are reported in Figs. 6a, 6b, and 6¢. The comg
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FIG.6. Case of a sinusoidal rotating cylinder in uniform free-stream flows=R600. Power spectral density
of the lift coefficient history for (a) lock-in%. = 0.625), (b) quasiperiodic3, = 1.325), and (c) nonreceptive state
(S =1.425). The natural Strouhal numbe,) is 0.2392.

results suggest the existence of a threshold amplitude for the forcing; we need to ope
beyond this threshold for the flow to “feel” the forcing. It was further observed that th
threshold is a function of the forcing frequency: higher frequencies require higher amplitt
for the control to stay effective.

The above results suggest looking faptimal pairs{w1, S} for drag minimization
To be more precise, we consider the drag as a functiojwfS;} and try to minimize
this function for{w1, S} varying in a “reasonable” subset BF. For Re=200 a method
couplingdirect searctand BFGS algorithmsyields, = 6 andS, = 0.74, which corresponds
to the lock-in case previously described. In Fig. 7 we visualize the contours of the dr
considered as a function af; and S, in the neighborhood of the optimal solution. In
Fig. 8a we show the variation versus time of the optimal sinusoidal control whose acti
started at timé = 0. The transition to low drag is visualized in Fig. 8b, which also show:
the shedding frequency transition. The drag reduction was found to be on the orde
30%. The lift coefficient is presented in Fig. 8c; we observe that the amplitude of t
lift oscillations is substantially reduced. Finally in Figs. 9a and 9b we show snapshots
the uncontrolled flow and of the optimally forced flow. The significant vortex-sheddir
phenomenon observed in Fig. 9a has been substantially reduced and the flow has
guasi-symmetrized. This is qualitatively similar to the effects observed by Tokumaru a
Dimotakis [36]. Details of the vortex shedding for various valueg afre reported in
Fig. 10; these figures clearly show the important reduction of vortex shedding in the cylin
wake.
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FIG. 7. Variation of the dragCp with S, andw; at Reynolds number 200.

Similar experiments have been carried out for=RE)00. Qualitatively, the simulated
phenomena are identical to those observed foERO0; however, the drag reduction this
time is on the order of 60%. The optimal amplitude and frequency are, thisdiire5.5
andS, = 0.625. The results shown in Figs. 11 to 14 are self-explanatory.
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FIG. 8. The time evolution of the (a) sinusoidal-optimal forcing, wih= 0.75 andw; = 6.00, (b) dragCp,
and (c) liftC,, at Reynolds number 200. Forcing was started at tira®.
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(a)

FIG. 9. \Vorticity contour plot of the wake of the unforced (a) and forced (b) flow at Reynolds number 200.

8.3. Drag Reduction by Optimal Control

In this section we present the results obtained by applying the methods discusse
Sections 2 to 6 to active flow control by rotation, the cost function being essentially t
drag, since the following results have been obtained witt0 in (2.9). The values of Re
are as in Section 8.2, namely 200 and 1000. The discretization parameters are also ct
as in Section 8.2. As initial guess for the optimal control computation we have used
guasi-optimal forcing obtained in Section 8.2. Typically convergence was obtained in
iterations of the BFGS algorithm for

k+1 ~k+1
(g gt _

1076,
Q.90 ~

Let us comment first on the result obtained for=R200. In Fig. 15a we represent the
computed optimal control (—) as a functiontofind compare it to the optimal sinusoidal
control (—) obtained in Section 8.2. We observe that the fundamental frequency of
optimal control is very close to the optimal frequency for the sinusoidal control. The pow
spectral density of the optimal control is shown in Fig. 15b.

Similarly, we present in Figs. 16a and 16b the results corresponding+0lR60. From
these figures we observe that the fundamental frequency of the optimal control and
optimal frequency for the sinusoidal control are even closer than fer Rg0.

From these simulations it follows that:

1. The fundamental frequency of the optimal control is very close to the optim
frequency obtained by the methods of Section 8.2.
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FIG. 10. Near-wake region: Forced vortex shedding at Reynolds number 20@wtl0.75 andw; = 6. The
sequence represents the first three forcing period.
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FIG. 11. Variation of the dra@Cp with S andw; at Reynolds number 1000.
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FIG. 12. The time evolution of the (a) sinusoidal-optimal forcing, wah= 0.625 andw; = 5.5, (b) dragCp
and (c) lift C_, at Reynolds number 1000. Forcing was started at tim@.

FIG. 13. \Vorticity contour plot of the wake of the unforced (a) and forced (b) flow at Reynolds number 100C
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t=36 t=4. t=44

FIG. 14. Near-wake region: Vortex shedding frequency shifted from its natural shedding frequen
(S, =0.2398) to the forcing frequencys(= 0.625), Re= 1000 andw; =5.5. The sequence represents the first
three forcing period.
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FIG.15. The (a) optimal forcing at Reynolds number 200 and its (b) power spectral density. In (a) the das|
line represents the optimal sinusoidal control.
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FIG. 16. The (a) optimal periodic forcing at Reynolds number 1000 and its (b) power spectral density. In |
the dashed line represents the optimal sinusoidal control.

2. The optimal control has one fundamental frequency and several harmonics wh
frequencies aredd multiples of the fundamental frequency.

8.4. Drag Reduction by Control in Fourier Space

From the results described in Section 8.3, it appears that the optimal controls obtai
there were predominantly composed of a sinusoidal mode oscillating at a fundame
frequency superposed with higher harmonic modes. This observation suggests looking
the controls in Fourier space. More precisely the angular velagity will be of the form

K
o) =) o sin2kr St — &). (101)
k=1

At Re=200, in order to see what effect additional harmonics may have on the dr
reduction, the optimal forcing was soughtin the space described by (101) with three differ
values ofK, namely 1, 3, and 10. The time interval for the con{@IT) was chosen so
that T =3T¢, with T =1/S the forcing period. A piecewise optimal control strategy
was used for the solution of the periodic control problem; to be more precise, the cont
time interval(0, T) was divided into sub-intervals of equal length and the optimal contrc
methodology previously discussed was applied successively on each of these sub-inter
Computational results show that the effect of the phase shiféssmall, suggesting taking
Sk =01in (101).

The computational experiment reported in Figs. 17-19 corresponds to the followi
scenario:

e Fromt = — T tot =0, the cylinderisfixed, thereis no control, and the flow oscillate:
at its natural frequency.

e At t =0 control starts with optimal periodic control in the class given by relatiol
(105).

The optimal periodic control witk =1 (resp.K = 3, K =10) is shown in Fig. 17a (resp.,
18a, 19a) and its corresponding drag and lift are shown in Figs. 17b and 17c (resp., 18b
18c, 19b and 19c¢). The highly oscillatory controls, drag, and lift observed in Figs. 17—
asK increases can be explained by the fact that they were computed within the cost
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FIG. 19. The (a) optimal periodic control, (b) the corresponding drag, and (c) the correspondikgifL0.

function (9); introducing a positive regularization parametarto the cost function would
have the immediate effect of smoothing the above results.

The optimal periodic control obtained during the 10th piecewise control loop has be
used successfully to stabilize the system beyond that loop; the effectiveness of this appr
relies on the fact that most transient effects have been damped out. A deeper analysis c

drag coefficient

forcing angular velocity (w)

time

FIG. 20. The (a) optimal periodic control (solid) in comparison with the optimal sinusoidal (dashed) contr
at Reynolds number 200. In (b) the corresponding drag is shown, with an additional reduction of 2.9% from
optimal sinusoidal forced case.
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FIG. 22. The time evolution of the drag and its viscous and pressure components for (a) the unforced
(b) the optimal periodic forced case, at Reynolds number 200. The total drag is represented by a solid line an
pressure and viscosity componentssbyand+ respectively.
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FIG. 23. Contribution of the time-averaged viscous drag as a function of the angle, at Reynolds number Z
The solid line represents the unforced case, the dashed line the optimal sinusoidal forced case, and the dash-
line the optimal periodic forced case.
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FIG. 24. The (a) optimal forcing (solid) in comparison with the quasi-optimal (dashed) forcing at Reynolc
number 1000. In (b) the corresponding drag is shown, with an additional reduction of 1.5% from the quasi-optim
forced case.

FIG. 25. \orticity contour plot of the wake of the optimally forced flow at Reynolds number 1000.
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FIG. 26. The time evolution of the drag and its viscous and pressure components for (a) the unforced .
(b) the optimal periodic forced case, at Reynolds number 1000. The total drag is represented by a solid line
the pressure and viscosity componentsdgnd-+ respectively.
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FIG.27. Contribution of the time-averaged viscous drag as a function of the angle, at Reynolds number 1(
The solid line represents the unforced case, the dashed line the forced case, and the dash—dotted line the op
forced case.

optimal periodic state reached wikh=>5 is in order. From Fig. 20, we observe that when
the peak rotation speed is reached, a corresponding minimum in the drag occurs, at t
t=0.6,t=1.25, andt = 1.9. We observe that the effect of the optimal control is to flatter
the drag in the neighborhood of its minima and to sharpen it in the neighborhood of
maxima. This can be seen in Fig. 20b at tinhes0.5, t = 1.15, andt =1.85. Indeed, the
sharp peaks in the drag correspond to times when the forcing changes direction, i.e., cr
zero. A very interesting feature can be seen at titne®.2 andt = 1.5, where a zig-zag
forcing motion corresponds to a lower peak in the drag. This optimization of the perio
forcing leads to an extra reduction in the drag coefficient from 0.932 to 0.905, or 2.87%

From Fig. 21, where a vorticity snapshot is presented, it can be seen that qualitatively
structure of the wake remains unchanged from the optimal sinusoidal control forced cas
the optimal periodic forced case. This suggests that the effects of the higher frequencie
only felt close to the boundary, but do not significantly affect the wake. The time evoluti
of the drag and its pressure and viscosity contributions are shown in Fig. 22. We obse
that the reduction in the pressure drag is slightly higher than the reduction in the visc
drag. In Fig. 23, a time-averaged profile of the viscous drag contribution over the cylinc
surface is shown, in comparison with the unforced and optimal sinusoidal forced cases.
reduction in the viscous drag occurs mainly at the peaks of the profile, namiby G0
andé = 300.

AtRe= 1000, we have, from a qualitative point of view, the same behavior as-atiRe,
as shown in Figs. 24-27. Compared to the optimal sinusoidal control, the optimal con
brings an additional drag reduction of no more than 2%, suggesting that engineering intui
was right when suggesting drag reduction via sinusoidal control.

9. CONCLUSIONS

Through a parametric search in forcing amplitude and frequency, minima were fol
for the drag reduction coefficient for flow around a spinning cylinder at Reynolds numb:
200 and 1000. These minima corresponded to drag reductions of 31% at Reynolds nur
200 and 61% at Reynolds number 1000. These results are qualitatively consistent witt
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experimental drag reduction of 80% at Reynolds number 15,000 found by Tokumaru :
Dimotakis [36]. This suggests the potential for significant drag reduction effects, increas
with Reynolds number, at least up to the critical Reynolds number of 300,000.

Under conditions of optimal forcing, it was noted that the wakes were smaller, were I
energetic, and had smaller spreading angles compared with the unforced case. Also, to
erate the flow field necessary for maximum drag reduction, increased amplitude of forc
was required as the oscillation frequencies increased. The quasi-optimal forcing conditi
determined by parametric search agreed closely with those found by application of opti
control theory. The theory predicted, and it was confirmed by simulation, that further dr
reduction could be achieved by adding higher harmonics to the forcing oscillations. T
was achieved by extending the time interval of minimum drag at the expense of sligh
higher, narrower peaks of maximum drag; however, the improvement is fairly small.

While drag reduction through oscillatory rotation provides an excellent demonstrati
of the application of optimal forcing control theory, it is clearly of little practical sig-
nificance. In that direction the use of low-order models (based for examplaoper
orthogonal decompositiofiPOD)) may lead to control techniques less computationally de
manding than the one discussed in the present paper (these methods are discussed in d
[14, 15], which also provide further references and point out current limitations of the
duced model approach). However, the application of the theory discussed in this articl
other forcing techniques such as variable (in space and time) blowing and suction at
walls could lead to some new forcing strategies for more complex shapes like airfoils.
are currently engaged in such studies, the results of which will be reported in the near fut
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